{
"cells": [
{
"cell_type": "markdown",
"id": "78f2dea8",
"metadata": {},
"source": [
"# Spectral Access\n",
"\n",
"This notebook is one of a set produced by NAVO to demonstrate data access with python tools.\n",
"\n",
"In this notebook, we show how to search for and retrieve spectra from VO services using the Registry and the __[Simple Spectral Access](http://www.ivoa.net/documents/SSA/)__ (SSA) protocol."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "95a14c57",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"\n",
"import requests, io\n",
"\n",
"from astropy.table import Table\n",
"import astropy.io.fits as fits\n",
"from astropy.coordinates import SkyCoord\n",
"# For downloading files\n",
"from astropy.utils.data import download_file\n",
"\n",
"import pyvo as vo\n",
"\n",
"# There are a number of relatively unimportant warnings that show up, so for now, suppress them:\n",
"import warnings\n",
"warnings.filterwarnings(\"ignore\", module=\"astropy.io.votable.*\")\n",
"warnings.filterwarnings(\"ignore\", module=\"pyvo.utils.xml.*\")"
]
},
{
"cell_type": "markdown",
"id": "111e6f5a",
"metadata": {},
"source": [
"## Finding available Spectral Access Services\n",
"\n",
"First, we find out what spectral access services ('ssa') are available in the Registry offering x-ray data."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "98eac349",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
Table length=7 \n",
"
\n",
"ivoid short_name \n",
"object object \n",
"ivo://nasa.heasarc/chanmaster Chandra \n",
"ivo://nasa.heasarc/hitomaster HITOMASTER \n",
"ivo://nasa.heasarc/intbsc INTEGRAL/BSC \n",
"ivo://nasa.heasarc/xrismmastr XRISMMASTR \n",
"ivo://nasa.heasarc/xtemaster RXTE \n",
"ivo://ned.ipac/sed_data_near_position NED_SED \n",
"ivo://wfau.roe.ac.uk/heavens_at_isdc/light-curves HEAVENS @ ISDC \n",
"
"
],
"text/plain": [
"\n",
" ivoid short_name \n",
" object object \n",
"------------------------------------------------- --------------\n",
" ivo://nasa.heasarc/chanmaster Chandra\n",
" ivo://nasa.heasarc/hitomaster HITOMASTER\n",
" ivo://nasa.heasarc/intbsc INTEGRAL/BSC\n",
" ivo://nasa.heasarc/xrismmastr XRISMMASTR\n",
" ivo://nasa.heasarc/xtemaster RXTE\n",
" ivo://ned.ipac/sed_data_near_position NED_SED\n",
"ivo://wfau.roe.ac.uk/heavens_at_isdc/light-curves HEAVENS @ ISDC"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"services = vo.regsearch(servicetype='ssa',waveband='x-ray')\n",
"services.to_table()['ivoid','short_name']"
]
},
{
"cell_type": "markdown",
"id": "5e9c7233",
"metadata": {},
"source": [
"We can look at only the Chandra entry:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "333f0832",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'https://heasarc.gsfc.nasa.gov/xamin/vo/ssa?table=chanmaster&'"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chandra_service = [s for s in services if 'Chandra' in s.short_name][0]\n",
"chandra_service.access_url"
]
},
{
"cell_type": "markdown",
"id": "0e9ccf89",
"metadata": {},
"source": [
"## Chandra Spectrum of Delta Ori\n",
"\n",
"Getting the list of spectra."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "8e2ebcb9",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING: AstropyDeprecationWarning: show_in_notebook() is deprecated as of 6.1 and to create\n",
" interactive tables it is recommended to use dedicated tools like:\n",
" - https://github.com/bloomberg/ipydatagrid\n",
" - https://docs.bokeh.org/en/latest/docs/user_guide/interaction/widgets.html#datatable\n",
" - https://dash.plotly.com/datatable [warnings]\n"
]
},
{
"data": {
"text/html": [
"Table length=6 \n",
"\n",
"idx obsid status name ra dec time detector grating exposure type pi public_date datalink SSA_start_time SSA_tmid SSA_stop_time SSA_duration SSA_coord_obs SSA_ra SSA_dec SSA_fov SSA_title SSA_reference SSA_datalength SSA_datamodel SSA_instrument SSA_publisher SSA_format SSA_wavelength_min SSA_wavelength_max SSA_bandwidth SSA_bandpass cloud_access \n",
"deg deg d s d d d d s deg deg deg deg m m m m \n",
"0 639 archived DELTA ORI 83.00125 -0.29917 51556.1364 ACIS-S HETG 49680 GO Cassinelli 52037 11724:chandra.obs.misc 51556.136400463 -- -- 49680.0 -- 83.00125 -0.29917 0.81 acisf00639N005_pha2.fits https://heasarc.gsfc.nasa.gov/FTP/chandra/data/byobsid/9/639/primary/acisf00639N005_pha2.fits.gz 12 Spectrum-1.0 ACIS-S HEASARC application/fits 1.2398e-10 6.1992e-09 6.07522e-09 3.16159e-09 {"aws":{"bucket_name":"nasa-heasarc","region":"us-east-1","policy":"open","key":"chandra/data/byobsid/9/639/primary/acisf00639N005_pha2.fits.gz"}} \n",
"1 7416 archived delta Ori (HD 36486) 83.00167 -0.29908 54413.427 HRC-S LETG 97080 GO Raassen 54783 11725:chandra.obs.misc 54413.4270486111 -- -- 97080.0 -- 83.00167 -0.29908 0.81 hrcf07416N004_pha2.fits https://heasarc.gsfc.nasa.gov/FTP/chandra/data/byobsid/6/7416/primary/hrcf07416N004_pha2.fits.gz 2 Spectrum-1.0 HRC-S HEASARC application/fits 1.2398e-10 6.1992e-09 6.07522e-09 3.16159e-09 {"aws":{"bucket_name":"nasa-heasarc","region":"us-east-1","policy":"open","key":"chandra/data/byobsid/6/7416/primary/hrcf07416N004_pha2.fits.gz"}} \n",
"2 14567 archived Delta Ori 83.00167 -0.29908 56280.7037 ACIS-S HETG 116500 GO Corcoran 56647 11726:chandra.obs.misc 56280.7036921296 -- -- 116500.0 -- 83.00167 -0.29908 0.81 acisf14567N003_pha2.fits https://heasarc.gsfc.nasa.gov/FTP/chandra/data/byobsid/7/14567/primary/acisf14567N003_pha2.fits.gz 12 Spectrum-1.0 ACIS-S HEASARC application/fits 1.2398e-10 6.1992e-09 6.07522e-09 3.16159e-09 {"aws":{"bucket_name":"nasa-heasarc","region":"us-east-1","policy":"open","key":"chandra/data/byobsid/7/14567/primary/acisf14567N003_pha2.fits.gz"}} \n",
"3 14568 archived Delta Ori 83.00167 -0.29908 56288.1612 ACIS-S HETG 123600 GO Corcoran 56655 11727:chandra.obs.misc 56288.1612268519 -- -- 123600.0 -- 83.00167 -0.29908 0.81 acisf14568N003_pha2.fits https://heasarc.gsfc.nasa.gov/FTP/chandra/data/byobsid/8/14568/primary/acisf14568N003_pha2.fits.gz 12 Spectrum-1.0 ACIS-S HEASARC application/fits 1.2398e-10 6.1992e-09 6.07522e-09 3.16159e-09 {"aws":{"bucket_name":"nasa-heasarc","region":"us-east-1","policy":"open","key":"chandra/data/byobsid/8/14568/primary/acisf14568N003_pha2.fits.gz"}} \n",
"4 14569 archived Delta Ori 83.00167 -0.29908 56283.254 ACIS-S HETG 120850 GO Corcoran 56650 11728:chandra.obs.misc 56283.2539814815 -- -- 120850.0 -- 83.00167 -0.29908 0.81 acisf14569N003_pha2.fits https://heasarc.gsfc.nasa.gov/FTP/chandra/data/byobsid/9/14569/primary/acisf14569N003_pha2.fits.gz 12 Spectrum-1.0 ACIS-S HEASARC application/fits 1.2398e-10 6.1992e-09 6.07522e-09 3.16159e-09 {"aws":{"bucket_name":"nasa-heasarc","region":"us-east-1","policy":"open","key":"chandra/data/byobsid/9/14569/primary/acisf14569N003_pha2.fits.gz"}} \n",
"5 14570 archived Delta Ori 83.00167 -0.29908 56285.5508 ACIS-S HETG 124100 GO Corcoran 56652 11729:chandra.obs.misc 56285.5507986111 -- -- 124100.0 -- 83.00167 -0.29908 0.81 acisf14570N003_pha2.fits https://heasarc.gsfc.nasa.gov/FTP/chandra/data/byobsid/0/14570/primary/acisf14570N003_pha2.fits.gz 12 Spectrum-1.0 ACIS-S HEASARC application/fits 1.2398e-10 6.1992e-09 6.07522e-09 3.16159e-09 {"aws":{"bucket_name":"nasa-heasarc","region":"us-east-1","policy":"open","key":"chandra/data/byobsid/0/14570/primary/acisf14570N003_pha2.fits.gz"}} \n",
"
\n",
"\n"
],
"text/plain": [
""
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"delori = SkyCoord.from_name(\"Delta Ori\")\n",
"\n",
"spec_tables = chandra_service.search(pos=delori,diameter=0.1)\n",
"spec_tables.to_table().show_in_notebook()"
]
},
{
"cell_type": "markdown",
"id": "9c86c1e9",
"metadata": {},
"source": [
"Accessing one of the spectra."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "8a0180fd",
"metadata": {},
"outputs": [],
"source": [
"## If you only run this once, you can do it in memory in one line:\n",
"## This fetches the FITS as an astropy.io.fits object in memory\n",
"# hdu_list = spec_tables[0].getdataobj()\n",
"## But if you might run this notebook repeatedly with limited bandwidth,\n",
"## download it once and cache it.\n",
"file_name = download_file(spec_tables[0].getdataurl(),cache=True)\n",
"hdu_list = fits.open(file_name)"
]
},
{
"cell_type": "markdown",
"id": "d2b9f69c",
"metadata": {},
"source": [
"## Simple example of plotting a spectrum"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "4fa555de",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"Table length=12 \n",
"
\n",
"SPEC_NUM TG_M TG_PART TG_SRCID X Y CHANNEL COUNTS STAT_ERR BACKGROUND_UP BACKGROUND_DOWN BIN_LO BIN_HI \n",
"int16 int16 int16 int16 float32 float32 int16[8192] int16[8192] float32[8192] int16[8192] int16[8192] float64[8192] float64[8192] \n",
"1 -3 1 1 4094.9138 4132.076 1 .. 8192 0 .. 0 1.8660254 .. 1.8660254 0 .. 0 0 .. 0 7.159166666667378 .. 0.3333333333333333 7.160000000000712 .. 0.33416666666666667 \n",
"2 -2 1 1 4094.9138 4132.076 1 .. 8192 0 .. 0 1.8660254 .. 1.8660254 0 .. 0 0 .. 0 10.738750000000886 .. 0.5 10.740000000000887 .. 0.50125 \n",
"3 -1 1 1 4094.9138 4132.076 1 .. 8192 0 .. 0 1.8660254 .. 1.8660254 0 .. 0 0 .. 0 21.477500000001772 .. 1.0 21.480000000001773 .. 1.0025 \n",
"4 1 1 1 4094.9138 4132.076 1 .. 8192 0 .. 0 1.8660254 .. 1.8660254 0 .. 0 0 .. 0 21.477500000001772 .. 1.0 21.480000000001773 .. 1.0025 \n",
"5 2 1 1 4094.9138 4132.076 1 .. 8192 0 .. 0 1.8660254 .. 1.8660254 0 .. 0 0 .. 0 10.738750000000886 .. 0.5 10.740000000000887 .. 0.50125 \n",
"6 3 1 1 4094.9138 4132.076 1 .. 8192 0 .. 0 1.8660254 .. 1.8660254 0 .. 0 0 .. 0 7.159166666667378 .. 0.3333333333333333 7.160000000000712 .. 0.33416666666666667 \n",
"7 -3 2 1 4094.9138 4132.076 1 .. 8192 0 .. 0 1.8660254 .. 1.8660254 0 .. 0 0 .. 0 13.985000000001373 .. 0.3333333333333333 13.98666666666804 .. 0.33499999999999996 \n",
"8 -2 2 1 4094.9138 4132.076 1 .. 8192 0 .. 0 1.8660254 .. 1.8660254 0 .. 0 0 .. 0 20.977500000001505 .. 0.5 20.980000000001507 .. 0.5025 \n",
"9 -1 2 1 4094.9138 4132.076 1 .. 8192 0 .. 0 1.8660254 .. 1.8660254 0 .. 0 0 .. 0 41.95500000000301 .. 1.0 41.960000000003014 .. 1.005 \n",
"10 1 2 1 4094.9138 4132.076 1 .. 8192 0 .. 0 1.8660254 .. 1.8660254 0 .. 0 0 .. 0 41.95500000000301 .. 1.0 41.960000000003014 .. 1.005 \n",
"11 2 2 1 4094.9138 4132.076 1 .. 8192 0 .. 0 1.8660254 .. 1.8660254 0 .. 0 0 .. 0 20.977500000001505 .. 0.5 20.980000000001507 .. 0.5025 \n",
"12 3 2 1 4094.9138 4132.076 1 .. 8192 0 .. 0 1.8660254 .. 1.8660254 0 .. 0 0 .. 0 13.985000000001373 .. 0.3333333333333333 13.98666666666804 .. 0.33499999999999996 \n",
"
"
],
"text/plain": [
"\n",
"SPEC_NUM TG_M ... BIN_HI \n",
" int16 int16 ... float64[8192] \n",
"-------- ----- ... ----------------------------------------\n",
" 1 -3 ... 7.160000000000712 .. 0.33416666666666667\n",
" 2 -2 ... 10.740000000000887 .. 0.50125\n",
" 3 -1 ... 21.480000000001773 .. 1.0025\n",
" 4 1 ... 21.480000000001773 .. 1.0025\n",
" 5 2 ... 10.740000000000887 .. 0.50125\n",
" 6 3 ... 7.160000000000712 .. 0.33416666666666667\n",
" 7 -3 ... 13.98666666666804 .. 0.33499999999999996\n",
" 8 -2 ... 20.980000000001507 .. 0.5025\n",
" 9 -1 ... 41.960000000003014 .. 1.005\n",
" 10 1 ... 41.960000000003014 .. 1.005\n",
" 11 2 ... 20.980000000001507 .. 0.5025\n",
" 12 3 ... 13.98666666666804 .. 0.33499999999999996"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"spec_table = Table(hdu_list[1].data)\n",
"spec_table"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "68dd28d9",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAPeCAYAAADd/6nHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdfVzV9f3/8ScXcqEIXuM4ilc5FSw0FWfmVKQY8yfpvtu3pSWxzb5z0FIss21pW16VX50rmW5m2swm1VdtIzUVvJhGoQgm4UVeNA0DpJJrBc75/P5wnDxyISCcA/i4327nluf9eX8+79fnvInz4nU+5/1xMgzDEAAAAAAAAGBHzo4OAAAAAAAAAHceilIAAAAAAACwO4pSAAAAAAAAsDuKUgAAAAAAALA7ilIAAAAAAACwO4pSAAAAAAAAsDuKUgAAAAAAALA7ilIAAAAAAACwO4pSAAAAAAAAsDuKUgAAAAAAALA7ilIAWp0NGzbIyclJR44cqXb7uHHjNHjwYOvz3r17y8nJqdrHD37wgyr7f/LJJ4qKilKfPn3k4eEhLy8vDRkyRHPnztW5c+fqFOPatWs1duxY+fr6yt3dXX369FFUVJQ+//zzBp0zAADA7WruOZTFYtGGDRsUERGhnj17ql27dho8eLAWLlyoq1evNvzEATiMq6MDAIDmYMiQIZozZ06Vdj8/P5vna9eu1cyZM9WlSxdNmzZNAwcOVEVFhTIyMvS3v/1NK1euVGlpqVxcXGodLy0tTX369FFERIQ6duyo8+fPa+3atUpISNCxY8eqjAsAANAc2TOHKikpUVRUlL73ve/pl7/8pbp166bk5GQtWLBAiYmJSkpKkpOTU6OfI4CmQ1EKACSZTCY9+uijtfb58MMPNXPmTI0ePVoJCQlq3769zfbly5dr0aJFdRrvz3/+c5W2yZMna/jw4frb3/6mefPm1T14AAAAB7FnDuXm5qZDhw7pvvvus7bNmDFDvXv3thamQkNDG3YiAByCr+8BQB39/ve/l5OTkzZt2lQlmZIkDw8Pvfjii7e8SqomvXv3liRduXLlNqIEAABoXhorh3Jzc7MpSFWaMmWKJOnEiRONEzAAu+FKKQCtVn5+vvLy8qq0l5eXV9tWXd927drJ09NTJSUlSkpK0rhx49SjR49Gi/Grr76S2WzWhQsX9Ic//EGSNGHChEY7PgAAQH21hBzqRtnZ2ZKkLl26NMnxATQdilIAWq3aLt8ODAy0eb5r1y517dq1Sr8lS5Zo3rx5OnPmjCoqKmwW96z09ddfy2KxWJ97e3vLzc2tTjGaTCZdu3ZNktS5c2e98soreuCBB+q0LwAAQFNoCTnUjV5++WV5e3srPDy83vsCcCyKUgBarbi4OH33u9+t0j5nzhyZzWabtpEjR2rhwoVV+vbv31+SVFBQIEny8vKq0qdv377Kz8+3Pn/nnXf04x//uE4x7tixQ1evXtWJEyf05ptvqri4uE77AQAANJWWkENVWrx4sfbs2aM///nP6tChQ732BeB4FKUAtFrBwcEaPnx4lfaOHTtWucy8S5cutX4qWLn+QVFRUZVt7733nsrLy3Xs2DE9/fTT1vaioiKb/i4uLlU+SRw/frwkKTw8XA899JAGDx4sLy8vxcTE1OEMAQAAGl9LyKEkKT4+Xr/73e/085//XDNnzrz1iQFodljoHADq4K677pKrq6syMjKqbBs7dqxCQ0M1bNgwm/b//d//1Xe+8x3rY8SIEbWO0a9fPw0dOlSbNm1q1NgBAAAcpalyqN27d2v69OmaOHGi1qxZ02TxA2haXCkFAHXQrl07jRs3Tvv371dWVpZMJtMt95k+fbruv/9+63NPT89b7lNaWmpdYwoAAKCla4oc6uOPP9aUKVM0fPhwvf3223J15c9aoKXi/14AqKP58+dr3LhxevTRR/XPf/6zytoIhmHYPO/bt6/69u1b5TgVFRUqLCxUx44dbdpTUlJ0/PhxTZ06tfGDBwAAcJDGyqEk6cSJE5o4caJ69+6thISEOn3oB6D5oigFAJKysrL05ptvVmn38vLS5MmTJUljxozRqlWr9OSTT6p///6aNm2aBg4cqLKyMp0+fVqbNm2Sm5ubunfvXutYRUVF6tmzpx5++GEFBgaqXbt2On78uNavXy8fHx89//zzTXGKAAAAjc6eOVRhYaHCwsL0zTff6JlnntH7779vs71fv34aNWpUo50bgKZHUQoAJKWnp+uxxx6r0t6rVy9rQiVJM2fO1KhRo/THP/5R77zzjrKzs9WmTRv169dPkZGRmjlzpvr161frWG3bttUvfvEL7d27V++++65KS0vl5+enRx55RL/73e/Uu3fvRj47AACApmHPHOqrr77SxYsXJUnz5s2rsj0yMpKiFNDCOBk3XysJAAAAAAAANDHuvgcAAAAAAAC7oygFAAAAAAAAu6MoBQAAAAAAALujKAUAAAAAAAC7oygFAAAAAAAAu6MoBQAAAAAAALtzdXQAzU1CQoLmzJkji8WiZ599Vr/4xS9uuY/FYtGlS5fUvn17OTk52SFKAABgL4ZhqLCwUH5+fnJ25vO8m02ZMkX79u3ThAkT9O6779Z5P/InAABar7rmT06GYRh2jKtZq6ioUEBAgPbu3SsfHx8NGzZMH374oTp37lzrfl988YV69uxppygBAIAjXLx4UT169HB0GM3Ovn37VFhYqDfeeKNeRSnyJwAAWr9b5U9cKXWDlJQUBQYGymQySZLCw8O1a9cuPfLII7Xu1759e0nXX2xvb+8mjxMAANhPQUGBevbsaX2/h61x48Zp37599d6P/AkAgNarrvmTXYpSS5Ys0ZYtW3Ty5El5enrqvvvu00svvaQBAwY02hgHDhzQsmXLlJqaqi+//FJbt27V5MmTq/SLi4vTsmXLlJ2draCgIL366qsKDg6WJF26dMlakJIkk8mkrKysW45decm5t7c3SRUAAK1Ua/yKWV3yp9pyp9tB/gQAQOt3q/zJLgsj7N+/X9HR0froo4+0e/dulZeX68EHH1RxcXG1/Q8dOqTy8vIq7ZmZmcrJyal2n+LiYgUFBSkuLq7GOOLj4xUbG6sFCxbo6NGjCgoKUlhYmHJzcxt2YgCaDb6JDAD1d6v8idwJAAA0JbsUpXbu3KnHH39cgYGBCgoK0oYNG3ThwgWlpqZW6WuxWBQdHa2pU6fKbDZb20+dOqWQkBC98cYb1Y4RHh6uhQsXasqUKTXGsWLFCs2YMUNRUVEKCAjQmjVr1LZtW73++uuSJD8/P5sro7KysuTn59fQ0wZgJxlZ+Rq+cI82p1xwdCgA0KLcKn+6Ve5UH9euXVNBQYHNAwAA3NkccguZ/Px8SVKnTp2qbHN2dtb27duVlpam6dOny2Kx6OzZswoJCdHkyZM1d+7cBo1ZVlam1NRUhYaG2owVGhqq5ORkSVJwcLAyMjKUlZWloqIi7dixQ2FhYTUeMy4uTgEBARoxYkSDYgLQOGbFp+ur4jLN23Lc0aEAQKtRl9ypPpYsWSIfHx/rg0XOAQCA3YtSFotFs2bN0ujRozV48OBq+/j5+SkpKUkHDx7U1KlTFRISotDQUK1evbrB4+bl5clsNsvX19em3dfXV9nZ2ZIkV1dXLV++XOPHj9eQIUM0Z86cWu+8Fx0drczMTB0+fLjBcQG4fRa+ugcAja4uuZMkhYaG6ic/+Ym2b9+uHj161Fiweu6555Sfn299XLx4sUnjBwAAzZ/d774XHR2tjIwMHTx4sNZ+/v7+2rhxo8aOHau+fftq3bp1dllgNCIiQhEREU0+DgAAQGuwZ8+eOvVzd3eXu7u74uLiFBcXZ7NMAwAAuDPZ9UqpmJgYJSQkaO/everRo0etfXNycvTEE09o0qRJKikp0ezZs29r7C5dusjFxaXKQuk5OTnq3r37bR0bAACgtWmq3IkrzQEAQCW7FKUMw1BMTIy2bt2qpKQk9enTp9b+eXl5mjBhggYNGqQtW7YoMTFR8fHxevrppxscg5ubm4YNG6bExERrm8ViUWJiokaNGtXg4wIAALRG5E4AAKCp2eXre9HR0Xrrrbf03nvvqX379tZ1CHx8fOTp6WnT12KxKDw8XL169VJ8fLxcXV0VEBCg3bt3KyQkRCaTqdqrpoqKinTmzBnr8/Pnzys9PV2dOnWSv7+/JCk2NlaRkZEaPny4goODtXLlShUXFysqKqoJzx4AAKB5ulX+1BS5E1/fAwAAlZwMo+lXCK5pLaj169fr8ccfr9K+e/dujRkzRh4eHjbtaWlp6tq1a7Vf/du3b5/Gjx9fpT0yMlIbNmywPl+1apWWLVum7OxsDRkyRK+88opGjhxZvxO6SUFBgXx8fJSfny9vb+/bOhaA+gtZvk/nLhdLkj5fOtHB0QBobVrz+3xd8qemyJ2k1v26AgBwp6vr+7xdilKtHUkV4FgUpQA0Jd7nG9eNV0qdPn2a1xUAgFaorvmTXRc6bwkSEhI0YMAA9e/fX6+99pqjwwEAAGhVWOgcAABUssuaUi1FRUWFYmNjtXfvXvn4+GjYsGGaMmWKOnfu7OjQAAAAAAAAWhWulLpBSkqKAgMDZTKZ5OXlpfDwcO3atcvRYQEAALQacXFxCggI0IgRIxwdCgAAcLB6F6UOHDigSZMmyc/PT05OTtq2bVut/c1ms55//nn16dNHnp6e6tevn1588UU19lJWdY0rLi5OvXv3loeHh0aOHKmUlBTrtkuXLslkMlmfm0wmZWVlNWqcAAAAdzK+vgcAACrVuyhVXFysoKAgxcXF1an/Sy+9pNWrV2vVqlU6ceKEXnrpJb388st69dVXa9zn0KFDKi8vr9KemZmpnJycBscVHx+v2NhYLViwQEePHlVQUJDCwsKUm5tbp3MBAAAAAABA46h3USo8PFwLFy7UlClT6tT/ww8/1EMPPaSJEyeqd+/e+vGPf6wHH3zQ5gqlG1ksFkVHR2vq1Kkym83W9lOnTikkJERvvPFGg+NasWKFZsyYoaioKAUEBGjNmjVq27atXn/9dUmSn5+fzZVRWVlZ8vPzq9N5AgAAAAAAoO6afE2p++67T4mJiTp9+rQk6dixYzp48KDCw8OrD8jZWdu3b1daWpqmT58ui8Wis2fPKiQkRJMnT9bcuXMbFEdZWZlSU1MVGhpqM1ZoaKiSk5MlScHBwcrIyFBWVpaKioq0Y8cOhYWF1XhM1kQAAACoH/InAABQqcnvvjdv3jwVFBRo4MCBcnFxkdls1qJFizRt2rQa9/Hz81NSUpLGjBmjqVOnKjk5WaGhoVq9enWD48jLy5PZbJavr69Nu6+vr06ePClJcnV11fLlyzV+/HhZLBbNnTu31jvvRUdHKzo6WgUFBfLx8WlwbAAAAHcK8icAAFCpyYtSb7/9tjZt2qS33npLgYGBSk9P16xZs+Tn56fIyMga9/P399fGjRs1duxY9e3bV+vWrZOTk1NTh6uIiAhFREQ0+TgAAAAAAAB3sib/+t4zzzyjefPm6ac//anuvvtuPfbYY5o9e7aWLFlS6345OTl64oknNGnSJJWUlGj27Nm3FUeXLl3k4uJSZaH0nJwcde/e/baODQAAAAAAgPpp8qJUSUmJnJ1th3FxcZHFYqlxn7y8PE2YMEGDBg3Sli1blJiYqPj4eD399NMNjsPNzU3Dhg1TYmKitc1isSgxMVGjRo1q8HEBAAAAAABQf/X++l5RUZHOnDljfX7+/Hmlp6erU6dO8vf316pVq7R161Zr8WfSpElatGiR/P39FRgYqLS0NK1YsUI/+9nPqj2+xWJReHi4evXqpfj4eLm6uiogIEC7d+9WSEiITCZTtVdN3SouSYqNjVVkZKSGDx+u4OBgrVy5UsXFxYqKiqrvywAAAIAGiIuLU1xcnM1dlgEAwJ2p3kWpI0eOaPz48dbnsbGxkqTIyEht2LBBeXl5Onv2rHX7q6++queff16/+tWvlJubKz8/P/3P//yP5s+fX+3xnZ2dtXjxYo0ZM0Zubm7W9qCgIO3Zs0ddu3ZtUFyS9PDDD+vy5cuaP3++srOzNWTIEO3cubPK4ucAAABoGix0DgAAKjkZhmE4OoiWrjKpys/Pl7e3t6PDAe44Icv36dzlYknS50snOjgaAK0N7/NNg9cVAIDWq67v802+phQAAAAAAABwM4pSAAAAAAAAsDuKUjdJSEjQgAED1L9/f7322muODgcAAAAAAKBVqvdC561ZRUWFYmNjtXfvXvn4+GjYsGGaMmWKOnfu7OjQAAAAWgXuvgcAACpxpdQNUlJSFBgYKJPJJC8vL4WHh2vXrl2ODgsAAKDViI6OVmZmpg4fPuzoUAAAgIPVuyh14MABTZo0SX5+fnJyctK2bdvqtF9WVpYeffRRde7cWZ6enrr77rt15MiR+g5/27HFxcWpd+/e8vDw0MiRI5WSkmLddunSJZlMJutzk8mkrKysRo0RAAAAAAAADShKFRcXKygoSHFxcXXe55tvvtHo0aPVpk0b7dixQ5mZmVq+fLk6duxYbf9Dhw6pvLy8SntmZqZycnIaHFt8fLxiY2O1YMECHT16VEFBQQoLC1Nubm6dzwUAAAAAAAC3r95rSoWHhys8PLxe+7z00kvq2bOn1q9fb23r06dPtX0tFouio6PVv39/bd68WS4uLpKkU6dOKSQkRLGxsZo7d26DYluxYoVmzJihqKgoSdKaNWv0/vvv6/XXX9e8efPk5+dnc2VUVlaWgoOD63WuAAAAAAAAuDW7rCn1j3/8Q8OHD9dPfvITdevWTUOHDtXatWurD8jZWdu3b1daWpqmT58ui8Wis2fPKiQkRJMnT66xIHUrZWVlSk1NVWhoqM1YoaGhSk5OliQFBwcrIyNDWVlZKioq0o4dOxQWFlbjMePi4hQQEKARI0Y0KCYAAAAAAIA7lV2KUufOndPq1avVv39/ffDBB5o5c6Z+/etf64033qi2v5+fn5KSknTw4EFNnTpVISEhCg0N1erVqxscQ15ensxms3x9fW3afX19lZ2dLUlydXXV8uXLNX78eA0ZMkRz5syp9c57LNQJAAAAAADQMPX++l5DWCwWDR8+XIsXL5YkDR06VBkZGVqzZo0iIyOr3cff318bN27U2LFj1bdvX61bt05OTk5NHmtERIQiIiKafBwAAAAAAIA7mV2ulPrOd76jgIAAm7ZBgwbpwoULNe6Tk5OjJ554QpMmTVJJSYlmz559WzF06dJFLi4uVRZKz8nJUffu3W/r2AAAAKgblj8AAACV7FKUGj16tE6dOmXTdvr0afXq1ava/nl5eZowYYIGDRqkLVu2KDExUfHx8Xr66acbHIObm5uGDRumxMREa5vFYlFiYqJGjRrV4OMCAACg7lj+AAAAVKr31/eKiop05swZ6/Pz588rPT1dnTp1kr+/v1atWqWtW7faFH9mz56t++67T4sXL9Z///d/KyUlRX/961/117/+tcrxLRaLwsPD1atXL8XHx8vV1VUBAQHavXu3QkJCZDKZarxq6laxxcbGKjIyUsOHD1dwcLBWrlyp4uJi6934AAAAAAAAYB/1LkodOXJE48ePtz6PjY2VJEVGRmrDhg3Ky8vT2bNnbfYZMWKEtm7dqueee05/+MMf1KdPH61cuVLTpk2rcnxnZ2ctXrxYY8aMkZubm7U9KChIe/bsUdeuXRsc28MPP6zLly9r/vz5ys7O1pAhQ7Rz584qi58DAAAAAACgaTkZhmE4OoiWrqCgQD4+PsrPz5e3t7ejwwHuOCHL9+nc5WJJ0udLJzo4GgCtDe/zTYPXFQCA1quu7/N2WVMKAAAAAAAAuBFFKQAAAAAAANgdRSkAAAAAAADYHUUpAAAANEhCQoIGDBig/v3767XXXnN0OAAAoIWhKHUTkisAAIBbq6ioUGxsrJKSkpSWlqZly5bpq6++cnRYAACgBaEodQOSKwAAgLpJSUlRYGCgTCaTvLy8FB4erl27djk6LAAA0IJQlLoByRUAALhTHDhwQJMmTZKfn5+cnJy0bdu2Kn3i4uLUu3dveXh4aOTIkUpJSbFuu3Tpkkwmk/W5yWRSVlaWPUIHAACtRL2LUnVJYGqzdOlSOTk5adasWfUdulFiI7kCAACQiouLFRQUpLi4uGq3x8fHKzY2VgsWLNDRo0cVFBSksLAw5ebm2jlSAA1hGIYKr5arwmxRSVmF9XltCq6Wq+hahcwWw6bdbDFUdK2iyvELbjpefmm5dYwbt5VVWHS13KzCq+XKLy2XYdgevzbXKsy6Wm6ucXvh1etjmi2GLDfFWdu+RdcqZLHUPY7qFFwtV8HVW59Pda/VjceQrp+HxWJY/9tS1HRetfUxWwwV3/TzVJ3ian4WpdpfT+n6a3njnFQ3Rzf3qVRSVqFys6XWuG4c++Y4bvV6XLpSah33xr7F166Pe6v/R1ujehelbpXA1Obw4cP6y1/+onvuuafWfocOHVJ5edXJyMzMVE5OToNjI7kCAAC4Ljw8XAsXLtSUKVOq3b5ixQrNmDFDUVFRCggI0Jo1a9S2bVu9/vrrkiQ/Pz+bD++ysrLk5+dX43jXrl1TQUGBzQNA03liY6rufmGX7vrtDgXM/0A/WZOsu1/YpTO5hdX2P3QmT/e8sEuDF3ygH63+0Gbbj1Z/qMELPlBuwVVr27z/O657Xtilj85dX+6kpKxCQb/fpbtf2KV3jlzUPS/s0p/2fCZJGrl4jwY+v1N3v7BLQb/fpV++mVqnczAMQyMW7tHgBR+orKJqoeDc5SLd/cL1Maf8+ZAeWfuRBi/4QF98UyKzxdC9f9ite36/SxU3FRm++KZEgxd8oEfWflSnOKqT8Mkl3fPCLt3zwi7Njk+vtW/s28d0zwu7lHbhG5v2FbtO6Z4XdmlV0me6+4VdCl2xX3e/sEuPrvu4wXHZ05IdJ3TPC7u069PsGvusO3he97ywS29+9G9r2/979aACF3ygr4qu1bjf5cJrClzwgSJWHayy7ff/zNQ9L+zS/tOXq2w7+5+fiagNhyVJ+09f1j0v7NLv/5lp7XMyu0B3v7BLT2y0/TksvlahgPkfaNyyfTXGFbf3jO55YZe2HP1Cbx++/nP+1wNnJUl7T+Xqnhd26Q83jHWjWZvTdN/SJPV5brs2ffxv3fPCLq07eF75JeUKXPCB+v92h+5+YZfOXi6qcfzWqN5FqVslMDUpKirStGnTtHbtWnXs2LHGfhaLRdHR0Zo6darM5m+r2qdOnVJISIjeeOONBsfW2MkVAABAa1RWVqbU1FSFhoZa25ydnRUaGqrk5GRJUnBwsDIyMpSVlaWioiLt2LFDYWFhNR5zyZIl8vHxsT569uzZ5OcB3Ml2Z9p+mH/k39cLIps+vlBt/+W7Tln/feziFZttlc8/uKH4EH/koiRZC08nvvy20PzMu59Ikv6457Qk6ZsS2wsOPvi05gsNblRuNlRwtUIVFkOXrpRW2R5/+KL13598ka+Pz38tSXov/ZKKrlWouMyssgqLLt9U/Hgv/ZIkWfs3xPPbMqz/3vaf49Vka9r1vzHX7D9r0/5K0hlJ0v/uuv46ncsrliR9eLZlrGv8l/3nJMmm4HOzFxOub/vdDa9X5c/KvlNVi0qV9p68fuHIp5eqfoCx4cPPJUkv7zxZZdvmlAs2x67sU7mPJP0t+XqB7Ob/Rz75Il+SlFXNz1qlZR9c///k2f/7RHP/7/rP+eLt18d4acf1/75+6Hy1+974c/LbrddfjxcTMvXRedv5rjyHO4Xd1pSKjo7WxIkTbZKb6jg7O2v79u1KS0vT9OnTZbFYdPbsWYWEhGjy5MmaO3dug8ZviuQqLi5OAQEBGjFiRINiAgAAaI7y8vJkNpvl6+tr0+7r66vs7Ot/lLq6umr58uUaP368hgwZojlz5qhz5841HvO5555Tfn6+9XHx4sUa+wIAgDuDqz0G2bx5s44eParDhw/Xqb+fn5+SkpI0ZswYTZ06VcnJyQoNDdXq1asbHENtydXJk9crmjcmVxaLRXPnzq01uYqOjlZ0dLQKCgrk4+PT4NgAAABaooiICEVERNSpr7u7u9zd3RUXF6e4uDibK+IBAMCdqcmLUhcvXtRTTz2l3bt3y8PDo877+fv7a+PGjRo7dqz69u2rdevWycnJqQkjva4+yRUAAEBr1KVLF7m4uFRZyzMnJ0fdu3e/rWPzoR4AAKjU5F/fS01NVW5uru699165urrK1dVV+/fv1yuvvCJXV9caPyXLycnRE088oUmTJqmkpESzZ8++rTiaMrkCAABoTdzc3DRs2DAlJiZa2ywWixITEzVq1KjbOjbLHwAAgEpNfqXUhAkTdPz4cZu2qKgoDRw4UM8++6xcXFyq7JOXl6cJEyZo0KBBeuedd3T69GmNGzdO7u7u+t///d8GxXFjcjV58mRJ3yZXMTExDTomAABAS1VUVKQzZ85Yn58/f17p6enq1KmT/P39FRsbq8jISA0fPlzBwcFauXKliouLFRUVdVvjcqUUAACoVO+i1K0SmFWrVmnr1q3WT9bat2+vwYMH2xyjXbt26ty5c5V26XqhKDw8XL169VJ8fLxcXV0VEBCg3bt3KyQkRCaTqcarphyVXAEAALQ0R44c0fjx463PY2NjJUmRkZHasGGDHn74YV2+fFnz589Xdna2hgwZop07d1ZZnxMAAKCh6l2UulUCk5eXp7Nnz9a0+y05Oztr8eLFGjNmjNzc3KztQUFB2rNnj7p27drg2EiuAAAArhs3bpwMw6i1T0xMTKNfUc5C5wAAoFK9i1K3SmBeeOEFvfDCC7UeY9++fbVuf+CBB6ptHzp06G3FJjVNcgUAAIC64et7AACgUpMvdA4AAAAAAADcjKIUAAAA7Ia77wEAgEoUpQAAAGA30dHRyszM1OHDhx0dCgAAcDCKUgAAAAAAALA7ilIAAAAAAACwO4pSAAAAsBvWlAIAAJUoSgEAAMBuWFMKAABUoihVjYSEBA0YMED9+/fXa6+95uhwAAAAAAAAWh1XRwfQ3FRUVCg2NlZ79+6Vj4+Phg0bpilTpqhz586ODg0AAAAAAKDV4Eqpm6SkpCgwMFAmk0leXl4KDw/Xrl27HB0WAAAAAABAq9KgotSBAwc0adIk+fn5ycnJSdu2bau1/5IlSzRixAi1b99e3bp10+TJk3Xq1KmGDN0occXFxal3797y8PDQyJEjlZKSYt126dIlmUwm63OTyaSsrKxGjxUAAOBOxELnAACgUoOKUsXFxQoKClJcXFyd+u/fv1/R0dH66KOPtHv3bpWXl+vBBx9UcXFxjfscOnRI5eXlVdozMzOVk5PT4Lji4+MVGxurBQsW6OjRowoKClJYWJhyc3PrdC4AAABoOBY6BwAAlRq0plR4eLjCw8Pr3H/nzp02zzds2KBu3bopNTVV3//+96v0t1gsio6OVv/+/bV582a5uLhIkk6dOqWQkBDFxsZq7ty5DYprxYoVmjFjhqKioiRJa9as0fvvv6/XX39d8+bNk5+fn82VUVlZWQoODq7zuQIAAAAAAODWHLKmVH5+viSpU6dO1W53dnbW9u3blZaWpunTp8tisejs2bMKCQnR5MmTqy1I1UVZWZlSU1MVGhpqM1ZoaKiSk5MlScHBwcrIyFBWVpaKioq0Y8cOhYWFVXs8Lj8HAAAAAABoGLsXpSwWi2bNmqXRo0dr8ODBNfbz8/NTUlKSDh48qKlTpyokJEShoaFavXp1g8fOy8uT2WyWr6+vTbuvr6+ys7MlSa6urlq+fLnGjx+vIUOGaM6cOTXeeY/LzwEAAAAAABqmQV/fux3R0dHKyMjQwYMHb9nX399fGzdu1NixY9W3b1+tW7dOTk5OTR5jRESEIiIimnwcAACAO01cXJzi4uJkNpsdHQoAAHAwu14pFRMTo4SEBO3du1c9evS4Zf+cnBw98cQTmjRpkkpKSjR79uzbGr9Lly5ycXGpslB6Tk6OunfvflvHBgAAwK1xpTkAAKhkl6KUYRiKiYnR1q1blZSUpD59+txyn7y8PE2YMEGDBg3Sli1blJiYqPj4eD399NMNjsPNzU3Dhg1TYmKitc1isSgxMVGjRo1q8HEBAAAAAABQPw36+l5RUZHOnDljfX7+/Hmlp6erU6dO8vf316pVq7R161Zr8Sc6OlpvvfWW3nvvPbVv3966fpOPj488PT2rHN9isSg8PFy9evVSfHy8XF1dFRAQoN27dyskJEQmk6naq6ZuFZckxcbGKjIyUsOHD1dwcLBWrlyp4uJi6934AAAAAAAA0PQaVJQ6cuSIxo8fb30eGxsrSYqMjNSGDRuUl5ens2fPWrdXLk4+btw4m+OsX79ejz/+eJXjOzs7a/HixRozZozc3Nys7UFBQdqzZ4+6du3aoLgk6eGHH9bly5c1f/58ZWdna8iQIdq5c2eVxc8BAAAAAADQdBpUlBo3bpwMw6hx+wsvvKAXXnjB+ry2vjV54IEHqm0fOnRog+OqFBMTo5iYmHrHBAAAAAAAgMZh14XOAQAAAAAAAImiFAAAAAAAAByAohQAAAAAAADsjqIUAAAA7CYuLk4BAQEaMWKEo0MBAAAORlEKAAAAdhMdHa3MzEwdPnzY0aEAAAAHoygFAAAAAAAAu6MoBQAAAAAAALujKAUAAAAAAAC7oygFAAAAAAAAu6MoBQAAAAAAALujKAUAAAAAAAC7oyj1HwkJCRowYID69++v1157zdHhAAAANHtTpkxRx44d9eMf/9jRoQAAgBaIopSkiooKxcbGKikpSWlpaVq2bJm++uorR4cFAADQrD311FP629/+5ugwAABAC0VRSlJKSooCAwNlMpnk5eWl8PBw7dq1y9FhAQAANGvjxo1T+/btHR0GAABooVpFUerAgQOaNGmS/Pz85OTkpG3btlXpExcXp969e8vDw0MjR45USkqKddulS5dkMpmsz00mk7KysuwROgAAQJO43fwIAACgqbWKolRxcbGCgoIUFxdX7fb4+HjFxsZqwYIFOnr0qIKCghQWFqbc3Fw7RwqgsRiGoRNfFqjcbLFpv1pu1umcQgdFdfsMw9Cp7EJdLTfbtFsshjIvFchsMep1rJPZBbpWYb51Z0mlZWZ9llOozEsFqvjP63o6p2oskHILrio7/2qV9pKyCh3/Il9nchvvZ/BKSZkufl1ifX4+r1hfFV3TqexCfV1cpi++Kal2v/2nL9tsKymr0JncokaLC81fY+RHQ4YM0eDBg6s8Ll26ZK/TAAAArZirowNoDOHh4QoPD69x+4oVKzRjxgxFRUVJktasWaP3339fr7/+uubNmyc/Pz+bK6OysrIUHBxc4/GuXbuma9euWZ8XFBQ0wlkAqI91B89r4fsn9MO7u9u0P/zXj3Ts4hWtnnavwu/+joOia7idGdmauemognp20HvRo63ty3ad0up9Z/XY93rpxcmD63SsrWlZin37mL7Xt5M2PzHqlv0nvvovnbtcLEn60b0mhQ/+jmb87YgC/bz1/q/HNOyEWqEKs0XBixMlSSdf/IE82rhYtz34xwP64ptSSdJbM0bqvn5dbnu8IX/YLUlKfi5ERVcr9MAfD1Tpk/b8A+rYzs36/INPs/U/G1MlSZ8vnWgT29v/M0rBfTrddlxo/m43P5Kk9PT0RouH/AkAANysVVwpVZuysjKlpqYqNDTU2ubs7KzQ0FAlJydLkoKDg5WRkaGsrCwVFRVpx44dCgsLq/GYS5YskY+Pj/XRs2fPJj8PALb+euCcJGn78Wyb9mMXr0iS4o9ctHdIjaIy7srzqLR631lJ0saP/l3nY735n74fnfu6Tv0rC1KStOVolt5NvR7Lp5f4w/FGpTdcOfZNSZnNtsqClCQlfPJlo4577OIVHfgsr9ptZy7bXgH1SuJnVfpUxrb9eOPGhZapLvlRYyN/AgAAN2v1Ram8vDyZzWb5+vratPv6+io7+/ofs66urlq+fLnGjx+vIUOGaM6cOercuXONx3zuueeUn59vfVy82DL/+AUAAHemuuRHdREaGqqf/OQn2r59u3r06FFrQYv8CQAA3KxVfH2vMURERCgiIqJOfd3d3eXu7t7EEQEAADRve/bsqXPfyvwpLi5OcXFxMptZrw4AgDtdqy9KdenSRS4uLsrJybFpz8nJUffu3WvYq34M4/rCw6yNANiP+WqxLNeuf3Wq4qpkuWa72HNZaVGL/H+yrLTIei43xn/j+dX1vMpLi6s9Vk2qew3rs/+dovBqufV1KSwoUDuncuu2G1/DayWN8zNYecziokKVFl+tMk+SVFRYoIKCb9/Sy69WnfvK540V152k8vWqfL9vDeyRH9UkOjpa0dHRys/PV4cOHfh5BJpIde8XknS1hveBG/MGqfo8pLS4sMr7SnmphwoKClRUWFDtmAUFNbffSlmF5dv33MICFbjZFrOvlhRVe+zKOGt6vy4tLrztHOd6LlphfV7bcSrHujk/rWmObicue6qMv+KqpcZ4q/uZqmwrKSqscb+SoprnyPqzd9WlyrYbfyYKCgqqzYmulVSf4xYX3vrnonK7xcVJFvO3eUFBQYEqqhmrun1vVnzDuVaeQ0uY/1upc/5ktDKSjK1bt9q0BQcHGzExMdbnZrPZMJlMxpIlSxplzIsXLxqSePDgwYMHDx6t+HHx4sVGyRscQbJ/flSTVatWGYMGDTL69evn8DnlwYMHDx48eDTt41b5U6u4UqqoqEhnzpyxPj9//rzS09PVqVMn+fv7KzY2VpGRkRo+fLiCg4O1cuVKFRcXW+82c7v8/Px08eJFtW/fXk5OTo1yzEoFBQXq2bOnLl68KG9v70Y9Npoe89eyMX8tH3PYsjWX+TMMQ4WFhfLz83NYDA3h6PyoJpVXSlksFl26dIn8CdViDls25q9lY/5atuYyf3XNn1pFUerIkSMaP3689XlsbKwkKTIyUhs2bNDDDz+sy5cva/78+crOztaQIUO0c+fOKot7NpSzs7N69OjRKMeqibe3N78QWjDmr2Vj/lo+5rBlaw7z5+Pj49DxG8LR+dGtkD+hLpjDlo35a9mYv5atOcxfXfKnVlGUGjdu3C2/pxgTE6OYmBg7RQQAAOBY5EcAAKC5c3Z0AAAAAAAAALjzUJRq5tzd3bVgwQK5u7s7OhQ0APPXsjF/LR9z2LIxf2gofnZaPuawZWP+Wjbmr2VrafPnZNzqum4AAAAAAACgkXGlFAAAAAAAAOyOohQAAAAAAADsjqIUAAAAAAAA7I6iFAAAAAAAAOyOolQzFhcXp969e8vDw0MjR45USkqKo0O6Iy1ZskQjRoxQ+/bt1a1bN02ePFmnTp2y6XP16lVFR0erc+fO8vLy0n/9138pJyfHps+FCxc0ceJEtW3bVt26ddMzzzyjiooKmz779u3TvffeK3d3d911113asGFDU5/eHWXp0qVycnLSrFmzrG3MXfOXlZWlRx99VJ07d5anp6fuvvtuHTlyxLrdMAzNnz9f3/nOd+Tp6anQ0FB99tlnNsf4+uuvNW3aNHl7e6tDhw76+c9/rqKiIps+n3zyicaMGSMPDw/17NlTL7/8sl3OrzUzm816/vnn1adPH3l6eqpfv3568cUXdeM9Vpg/NAVyKMcjf2pdyKFaHvKnlu2OyqEMNEubN2823NzcjNdff9349NNPjRkzZhgdOnQwcnJyHB3aHScsLMxYv369kZGRYaSnpxs//OEPDX9/f6OoqMja55e//KXRs2dPIzEx0Thy5Ijxve99z7jvvvus2ysqKozBgwcboaGhRlpamrF9+3ajS5cuxnPPPWftc+7cOaNt27ZGbGyskZmZabz66quGi4uLsXPnTrueb2uVkpJi9O7d27jnnnuMp556ytrO3DVvX3/9tdGrVy/j8ccfNz7++GPj3LlzxgcffGCcOXPG2mfp0qWGj4+PsW3bNuPYsWNGRESE0adPH6O0tNTa5wc/+IERFBRkfPTRR8a//vUv46677jIeeeQR6/b8/HzD19fXmDZtmpGRkWH8/e9/Nzw9PY2//OUvdj3f1mbRokVG586djYSEBOP8+fPGO++8Y3h5eRl/+tOfrH2YPzQ2cqjmgfyp9SCHannIn1q+OymHoijVTAUHBxvR0dHW52az2fDz8zOWLFniwKhgGIaRm5trSDL2799vGIZhXLlyxWjTpo3xzjvvWPucOHHCkGQkJycbhmEY27dvN5ydnY3s7Gxrn9WrVxve3t7GtWvXDMMwjLlz5xqBgYE2Yz388MNGWFhYU59Sq1dYWGj079/f2L17tzF27FhrQsXcNX/PPvuscf/999e43WKxGN27dzeWLVtmbbty5Yrh7u5u/P3vfzcMwzAyMzMNScbhw4etfXbs2GE4OTkZWVlZhmEYxp///GejY8eO1jmtHHvAgAGNfUp3lIkTJxo/+9nPbNp+9KMfGdOmTTMMg/lD0yCHap7In1omcqiWifyp5buTcii+vtcMlZWVKTU1VaGhodY2Z2dnhYaGKjk52YGRQZLy8/MlSZ06dZIkpaamqry83Ga+Bg4cKH9/f+t8JScn6+6775avr6+1T1hYmAoKCvTpp59a+9x4jMo+zPnti46O1sSJE6u8vsxd8/ePf/xDw4cP109+8hN169ZNQ4cO1dq1a63bz58/r+zsbJvX38fHRyNHjrSZww4dOmj48OHWPqGhoXJ2dtbHH39s7fP9739fbm5u1j5hYWE6deqUvvnmm6Y+zVbrvvvuU2Jiok6fPi1JOnbsmA4ePKjw8HBJzB8aHzlU80X+1DKRQ7VM5E8t352UQ7naZRTUS15ensxms80vcEny9fXVyZMnHRQVJMlisWjWrFkaPXq0Bg8eLEnKzs6Wm5ubOnToYNPX19dX2dnZ1j7VzWflttr6FBQUqLS0VJ6enk1xSq3e5s2bdfToUR0+fLjKNuau+Tt37pxWr16t2NhY/eY3v9Hhw4f161//Wm5uboqMjLTOQXWv/43z061bN5vtrq6u6tSpk02fPn36VDlG5baOHTs2yfm1dvPmzVNBQYEGDhwoFxcXmc1mLVq0SNOmTZMk5g+NjhyqeSJ/apnIoVou8qeW707KoShKAfUQHR2tjIwMHTx40NGhoA4uXryop556Srt375aHh4ejw0EDWCwWDR8+XIsXL5YkDR06VBkZGVqzZo0iIyMdHB1u5e2339amTZv01ltvKTAwUOnp6Zo1a5b8/PyYP+AOQv7U8pBDtWzkTy3fnZRD8fW9ZqhLly5ycXGpcveKnJwcde/e3UFRISYmRgkJCdq7d6969Ohhbe/evbvKysp05coVm/43zlf37t2rnc/KbbX18fb25lOiBkpNTVVubq7uvfdeubq6ytXVVfv379crr7wiV1dX+fr6MnfN3He+8x0FBATYtA0aNEgXLlyQ9O0c1Pb7snv37srNzbXZXlFRoa+//rpe84z6e+aZZzRv3jz99Kc/1d13363HHntMs2fP1pIlSyQxf2h85FDND/lTy0QO1bKRP7V8d1IORVGqGXJzc9OwYcOUmJhobbNYLEpMTNSoUaMcGNmdyTAMxcTEaOvWrUpKSqpyeeOwYcPUpk0bm/k6deqULly4YJ2vUaNG6fjx4za/FHbv3i1vb2/rG8aoUaNsjlHZhzlvuAkTJuj48eNKT0+3PoYPH65p06ZZ/83cNW+jR4+ucgvx06dPq1evXpKkPn36qHv37javf0FBgT7++GObObxy5YpSU1OtfZKSkmSxWDRy5EhrnwMHDqi8vNzaZ/fu3RowYACXnt+GkpISOTvbphouLi6yWCySmD80PnKo5oP8qWUjh2rZyJ9avjsqh7Lbkuqol82bNxvu7u7Ghg0bjMzMTOOJJ54wOnToYHP3CtjHzJkzDR8fH2Pfvn3Gl19+aX2UlJRY+/zyl780/P39jaSkJOPIkSPGqFGjjFGjRlm3V94S98EHHzTS09ONnTt3Gl27dq32lrjPPPOMceLECSMuLo5b4jaBG+8cYxjMXXOXkpJiuLq6GosWLTI+++wzY9OmTUbbtm2NN99809pn6dKlRocOHYz33nvP+OSTT4yHHnqo2tvhDh061Pj444+NgwcPGv3797e5He6VK1cMX19f47HHHjMyMjKMzZs3G23btuWWxrcpMjLSMJlM1tsZb9myxejSpYsxd+5cax/mD42NHKp5IH9qfcihWg7yp5bvTsqhKEo1Y6+++qrh7+9vuLm5GcHBwcZHH33k6JDuSJKqfaxfv97ap7S01PjVr35ldOzY0Wjbtq0xZcoU48svv7Q5zueff26Eh4cbnp6eRpcuXYw5c+YY5eXlNn327t1rDBkyxHBzczP69u1rMwYax80JFXPX/P3zn/80Bg8ebLi7uxsDBw40/vrXv9pst1gsxvPPP2/4+voa7u7uxoQJE4xTp07Z9Pnqq6+MRx55xPDy8jK8vb2NqKgoo7Cw0KbPsWPHjPvvv99wd3c3TCaTsXTp0iY/t9auoKDAeOqppwx/f3/Dw8PD6Nu3r/Hb3/7W5rbDzB+aAjmU45E/tT7kUC0L+VPLdiflUE6GYRj2uSYLAAAAAAAAuI41pQAAAAAAAGB3FKUAAAAAAABgdxSlAAAAAAAAYHcUpQAAAAAAAGB3FKUAAAAAAABgdxSlAAAAAAAAYHcUpQAAAAAAAGB3FKUAAAAAAABgdxSlAAAAAAAAYHcUpQAAAAAAAGB3FKUAAAAAAABgdxSlAAAAAAAAYHcUpQAAAAAAAGB3FKUAAAAAAABgdxSlAAAAAAAAYHcUpQAAAAAAAGB3FKUAAAAAAABgdxSlAAAAAAAAYHcUpQC0Ohs2bJCTk5OOHDlS7fZx48Zp8ODB1ue9e/eWk5NTtY8f/OAHVfb/5JNPFBUVpT59+sjDw0NeXl4aMmSI5s6dq3PnztUpxpSUFP3qV7/SsGHD1KZNGzk5OTXsZAEAABqoJeRMt0JOBbRsro4OAACagyFDhmjOnDlV2v38/Gyer127VjNnzlSXLl00bdo0DRw4UBUVFcrIyNDf/vY3rVy5UqWlpXJxcal1vO3bt+u1117TPffco759++r06dONej4AAABNwd45062QUwEtG0UpAJBkMpn06KOP1trnww8/1MyZMzV69GglJCSoffv2NtuXL1+uRYsW1Wm8mTNn6tlnn5Wnp6diYmJIoAAAQItgz5zJyclJ69ev1+OPP15jH3IqoGWjKAUAdfT73/9eTk5O2rRpU5XkSpI8PDz04osv1ulYvr6+jR0eAABAs9CYOdOtkFMBLRtFKQCtVn5+vvLy8qq0l5eXV9tWXd927drJ09NTJSUlSkpK0rhx49SjR48miRcAAMARyJkAOApFKQCtVmhoaI3bAgMDbZ7v2rVLXbt2rdJvyZIlmjdvns6cOaOKigqbxT4rff3117JYLNbn3t7ecnNzu43IAQAA7IecCYCjUJQC0GrFxcXpu9/9bpX2OXPmyGw227SNHDlSCxcurNK3f//+kqSCggJJkpeXV5U+ffv2VX5+vvX5O++8ox//+Me3FTsAAIC9NIecqaSkRCUlJVX2KSoqsrkyy8XFRR07dqzLaQFoAShKAWi1goODNXz48CrtHTt2rHLZeZcuXWr9lLByPYSioqIq29577z2Vl5fr2LFjevrpp63tRUVFNv1dXFyq/WQRAADAkRydM0nSyy+/rN///vdV9nnyySf15JNPWp/36tVLn3/+ea3nA6DloCgFAHVw1113ydXVVRkZGVW2jR07VpLk6mr7K/V///d/bZIrkigAANDaNSRnkqTp06fr/vvvt2l74IEH9Mwzz+jBBx+0tnl6ejZyxAAciaIUANRBu3btNG7cOO3fv19ZWVkymUy33Ofm5IokCgAAtHYNyZmk61/t69u3b5X2gICAWq/MAtCyOTs6AABoKebPny+z2axHH3202kvSDcOwed63b1+FhoZaH6NHj7ZXqAAAAA5T35wJwJ2LK6UAQFJWVpbefPPNKu1eXl6aPHmyJGnMmDFatWqVnnzySfXv31/Tpk3TwIEDVVZWptOnT2vTpk1yc3NT9+7dbznev//9b23cuFGSdOTIEUmyLhraq1cvPfbYY410ZgAAAI3H3jnTrZBTAS0bRSkAkJSenl5t0tKrVy9rgiVJM2fO1KhRo/THP/5R77zzjrKzs9WmTRv169dPkZGRmjlzpvr163fL8c6fP6/nn3/epq3y+dixY0mgAABAs2TvnOlWyKmAls3J4NpJAAAAAAAA2BlrSgEAAAAAAMDuKEoBAAAAAADA7ihKAQAAAAAAwO4oSgEAAAAAAMDuKEoBAAAAAADA7ihKAQAAAAAAwO5cHR1Ac5OQkKA5c+bIYrHo2Wef1S9+8Ytb7mOxWHTp0iW1b99eTk5OdogSAADYi2EYKiwslJ+fn5yd+TyvsZA/AQDQetU1f3IyDMOwY1zNWkVFhQICArR37175+Pho2LBh+vDDD9W5c+da9/viiy/Us2dPO0UJAAAc4eLFi+rRo4ejw2g1yJ8AAGj9bpU/caXUDVJSUhQYGCiTySRJCg8P165du/TII4/Uul/79u0lXX+xvb29mzxOAABgPwUFBerZs6f1/R6Ng/wJAIDWq675k92LUkuXLtVzzz2np556SitXrmy04x44cEDLli1TamqqvvzyS23dulWTJ0+u0i8uLk7Lli1Tdna2goKC9Oqrryo4OFiSdOnSJWtBSpJMJpOysrJuOXblJefe3t4kVQAAtFJ8xaxxkT8BAND63Sp/suvCCIcPH9Zf/vIX3XPPPbX2O3TokMrLy6u0Z2ZmKicnp9p9iouLFRQUpLi4uBqPGx8fr9jYWC1YsEBHjx5VUFCQwsLClJubW78TAQAAAAAAwG2xW1GqqKhI06ZN09q1a9WxY8ca+1ksFkVHR2vq1Kkym83W9lOnTikkJERvvPFGtfuFh4dr4cKFmjJlSo3HXrFihWbMmKGoqCgFBARozZo1atu2rV5//XVJkp+fn82VUVlZWfLz86vvqQJAs7Tsg5N6anOaWutSghe+KlHvee/rR38+5OhQAAAAWow//DNT8/7vE0eHgTuU3YpS0dHRmjhxokJDQ2vt5+zsrO3btystLU3Tp0+XxWLR2bNnFRISosmTJ2vu3LkNGr+srEypqak24zs7Oys0NFTJycmSpODgYGVkZCgrK0tFRUXasWOHwsLCajxmXFycAgICNGLEiAbFBAD2FLf3rN5Lv6RPvsh3dChN4vvL9kqSjl644thAANSK/AkAmo9ys0WvHzqvzYcv6otvShwdDu5AdllTavPmzTp69KgOHz5cp/5+fn5KSkrSmDFjNHXqVCUnJys0NFSrV69ucAx5eXkym83y9fW1aff19dXJkyclSa6urlq+fLnGjx8vi8WiuXPn1nrnvejoaEVHR6ugoEA+Pj4Njg0A7KncbHF0CADuYORPANB83HgBfYW5dV5Nj+atyYtSFy9e1FNPPaXdu3fLw8Ojzvv5+/tr48aNGjt2rPr27at169bZZYHRiIgIRURENPk4AAAAAAAAd7Im//peamqqcnNzde+998rV1VWurq7av3+/XnnlFbm6utqsG3WjnJwcPfHEE5o0aZJKSko0e/bs24qjS5cucnFxqbJQek5Ojrp3735bxwaAloTPwAAAAHAzckQ4QpMXpSZMmKDjx48rPT3d+hg+fLimTZum9PR0ubi4VNknLy9PEyZM0KBBg7RlyxYlJiYqPj5eTz/9dIPjcHNz07Bhw5SYmGhts1gsSkxM1KhRoxp8XAAAAAAAWiI7fBkJqFWTf32vffv2Gjx4sE1bu3bt1Llz5yrt0vVCUXh4uHr16qX4+Hi5uroqICBAu3fvVkhIiEwmU7VXTRUVFenMmTPW5+fPn1d6ero6deokf39/SVJsbKwiIyM1fPhwBQcHa+XKlSouLlZUVFQjnzUAAAAAAABqY5eFzuvD2dlZixcv1pgxY+Tm5mZtDwoK0p49e9S1a9dq9zty5IjGjx9vfR4bGytJioyM1IYNGyRJDz/8sC5fvqz58+crOztbQ4YM0c6dO6ssfg4ArZnBtdkAAAAAmgGHFKX27dtX6/YHHnig2vahQ4fWuM+4ceNk1OEvrZiYGMXExNyyHwAAAOouISFBc+bMkcVi0bPPPqtf/OIXjg4JAFAPdfl7Gmhsze5KKQAAALQsFRUVio2N1d69e+Xj46Nhw4ZpypQp6ty5s6NDAwDUgiWl4GhNvtA5AKB54VMwAI0tJSVFgYGBMplM8vLyUnh4uHbt2uXosAAAQDNHUQoAAKAFWLp0qZycnDRr1qxGPe6BAwc0adIk+fn5ycnJSdu2bau2X1xcnHr37i0PDw+NHDlSKSkp1m2XLl2SyWSyPjeZTMrKymrUOAEAQOtDUQoAAKCZO3z4sP7yl7/onnvuqbXfoUOHVF5eXqU9MzNTOTk51e5TXFysoKAgxcXF1Xjc+Ph4xcbGasGCBTp69KiCgoIUFham3Nzc+p0IAKDZ4lp6OAJFKQAAgGasqKhI06ZN09q1a9WxY8ca+1ksFkVHR2vq1Kkym83W9lOnTikkJERvvPFGtfuFh4dr4cKFmjJlSo3HXrFihWbMmKGoqCgFBARozZo1atu2rV5//XVJkp+fn82VUVlZWfLz86vvqQIA7MzJiVWl4FgUpW6SkJCgAQMGqH///nrttdccHQ4ANDo+BQNalujoaE2cOFGhoaG19nN2dtb27duVlpam6dOny2Kx6OzZswoJCdHkyZM1d+7cBo1fVlam1NRUm/GdnZ0VGhqq5ORkSVJwcLAyMjKUlZWloqIi7dixQ2FhYdUeLy4uTgEBARoxYkSD4gEAAK0Hd9+7AXeOAQAAzcnmzZt19OhRHT58uE79/fz8lJSUpDFjxmjq1KlKTk5WaGioVq9e3eAY8vLyZDab5evra9Pu6+urkydPSpJcXV21fPlyjR8/XhaLRXPnzq0xf4qOjlZ0dLQKCgrk4+PT4LgAAEDLR1HqBjfeOUaS9c4xjzzyiIMjAwAAd5qLFy/qqaee0u7du+Xh4VHn/fz9/bVx40aNHTtWffv21bp16+zy9YyIiAhFREQ0+TgAgKbBDZrhCHb5+t7q1at1zz33yNvbW97e3ho1apR27NjRqGNw5xgAqBsSDqBlSE1NVW5uru699165urrK1dVV+/fv1yuvvCJXV1ebdaNulJOToyeeeEKTJk1SSUmJZs+efVtxdOnSRS4uLlUWSs/JyVH37t1v69gAAODOZpeiVI8ePbR06VKlpqbqyJEjCgkJ0UMPPaRPP/202v7cOQYAANzpJkyYoOPHjys9Pd36GD58uKZNm6b09HS5uLhU2ScvL08TJkzQoEGDtGXLFiUmJio+Pl5PP/10g+Nwc3PTsGHDlJiYaG2zWCxKTEzUqFGjGnxcAAAAuxSlJk2apB/+8Ifq37+/vvvd72rRokXy8vLSRx99VKUvd44B0BBncguVduGbKu3HLl7RgN/t0I7jXzogKul8XrGOfP61jn+Rr5PZBQ6JoTFdKSlT0skcVZgtjg4FaPXat2+vwYMH2zzatWunzp07a/DgwVX6WywWhYeHq1evXoqPj5erq6sCAgK0e/durV+/Xn/84x+rHaeoqMha9JKk8+fPKz09XRcuXLD2iY2N1dq1a/XGG2/oxIkTmjlzpoqLixUVFdUk5w4AAO4Mdl9Tymw265133lFxcXG1n65V3jnm+9//vqZPn66NGzfq/PnzjXbnmOeee85mrJruHOPj46MdO3bo+eefb9iJArCr0BUHJEkpv5mgbt7frr3yUNwhSdLMTUeV/FyIvuPjade4xv/vPpvn5xb/UM7Ojr31rnEb99/70Z8/1Lm8Yj37g4GaOa5fI0YF4HY5Oztr8eLFGjNmjNzc3KztQUFB2rNnj7p27VrtfkeOHNH48eOtz2NjYyVJkZGR2rBhgyTp4Ycf1uXLlzV//nxlZ2dryJAh2rlzZ5XFzwEALRlrPMD+7FaUOn78uEaNGqWrV6/Ky8tLW7duVUBAQLV9W8KdY6Tr61PFxcXVuKYDAPu7+E2JTVHqRv/+qsTuRambWQxDznJsUep2nMsrliQlfHKJohTgAPv27at1+wMPPFBt+9ChQ2vcZ9y4cTLqsNhcTEyMYmJibtkPAACgruxWlBowYIDS09OVn5+vd999V5GRkdq/f3+NhamWcOcYbmkMAAAAAADQMHZZU0q6vkjmXXfdpWHDhmnJkiUKCgrSn/70pxr7c+cYAI2t5V6f1Mi4MhsAAABAM2C3otTNLBaLrl27Vu027hwDAAAAAID91OGb3ECjs0tR6rnnntOBAwf0+eef6/jx43ruuee0b98+TZs2rUpf7hwDAADQ8iQkJGjAgAHq37+/XnvtNUeHAwAAWgC7rCmVm5ur6dOn68svv5SPj4/uueceffDBB9UuxsmdYwAAAFqWiooKxcbGau/evfLx8dGwYcM0ZcqUWm8YAwAAYJei1Lp16+rVnzvHAGgK9rhZQkvAldkAGltKSooCAwNlMpkkSeHh4dq1a5ceeeQRB0cGAKgrckQ4gsPWlAIAAEDtVq9erXvuuUfe3t7y9vbWqFGjtGPHjkYd48CBA5o0aZL8/Pzk5OSkbdu2VdsvLi5OvXv3loeHh0aOHKmUlBTrtkuXLlkLUpJkMpmUlZXVqHECAIDWh6IUgDsGF0oBaGl69OihpUuXKjU1VUeOHFFISIgeeughffrpp9X2P3TokMrLy6u0Z2ZmVrkDcaXi4mIFBQUpLi6uxjji4+MVGxurBQsW6OjRowoKClJYWJhyc3MbdmJAM1dhtqi0zOzoMCRJV8vNKjdb7D6u2WKopKyi1u2OiMsRGmMOrlU0j58noLmhKAUAdxjurAK0HJMmTdIPf/hD9e/fX9/97ne1aNEieXl56aOPPqrS12KxKDo6WlOnTpXZ/O0fP6dOnVJISIjeeOONascIDw/XwoULNWXKlBrjWLFihWbMmKGoqCgFBARozZo1atu2rV5//XVJkp+fn82VUVlZWfLz82voaQMOZbYYuuu3OzRo/k69tPOkQ2P5zdbjGvj8TvX/7Q67FjUMw1C/32xXwPwPdPyL/Gr7/GDlAX1vcaLKKlp3Yeov+89a5+BqecPm4B/HLmnA73Zqc8qFW3d2oL8eOOfoEHAHoigFAADQApjNZm3evFnFxcUaNWpUle3Ozs7avn270tLSNH36dFksFp09e1YhISGaPHmy5s6d26Bxy8rKlJqaqtDQUJuxQkNDlZycLEkKDg5WRkaGsrKyVFRUpB07digsLKza48XFxSkgIEAjRoxoUDxAU8stvGr99+p9Zx0YifTWx98WMT7LKbLbuKU3FF+eefdYtX0+yy3SV8VlOnvZfnE5wpId3xYmj1280qBj/PrvaZKkeVuON0ZITebd1C8cHQLuQHZZ6BwAAAANc/z4cY0aNUpXr16Vl5eXtm7dqoCAgGr7+vn5KSkpSWPGjNHUqVOVnJys0NBQrV69usHj5+XlyWw2V7lbsa+vr06evP7Hmqurq5YvX67x48fLYrFo7ty5Nd55Lzo6WtHR0SooKJCPj0+D4wIAAC0fRSkAdwyWlLrO4N4qQIsyYMAApaenKz8/X++++64iIyO1f//+GgtT/v7+2rhxo8aOHau+fftq3bp1drn7aEREhCIiIpp8HABNz4msCYCd8PU9AACAZszNzU133XWXhg0bpiVLligoKEh/+tOfauyfk5OjJ554QpMmTVJJSYlmz559W+N36dJFLi4uVRZKz8nJUffu3W/r2ADqzlFrQrIWJYCmRFEKAACgBbFYLLp27Vq12/Ly8jRhwgQNGjRIW7ZsUWJiouLj4/X00083eDw3NzcNGzZMiYmJNjEkJiZWu7YVgKZhzyuduWMxAHvh63sAcIfhE0+g5XjuuecUHh4uf39/FRYW6q233tK+ffv0wQcfVOlrsVgUHh6uXr16KT4+Xq6urgoICNDu3bsVEhIik8lU7VVTRUVFOnPmjPX5+fPnlZ6erk6dOsnf31+SFBsbq8jISA0fPlzBwcFauXKliouLFRUV1XQnDwAAWj2KUgDuGHzqB6Clyc3N1fTp0/Xll1/Kx8dH99xzjz744AM98MADVfo6Oztr8eLFGjNmjNzc3KztQUFB2rNnj7p27VrtGEeOHNH48eOtz2NjYyVJkZGR2rBhgyTp4Ycf1uXLlzV//nxlZ2dryJAh2rlzZ5XFzwE0HYd9fY+1KAE0IYpSAAAAzdS6devq1b+6YpUkDR06tMZ9xo0bJ6MOf+3GxMQoJiamXvEAaDyUhgC0RqwpBeAOwqVSEkktAACoHVeXA7AXilIAAAAA0MzV5YrGxhvLbkMBuMNRlAIAAACAZs5RdSIKVACaEkWpmyQkJGjAgAHq37+/XnvtNUeHAwAAAAAOQ00KQFNiofMbVFRUKDY2Vnv37pWPj4+GDRumKVOmqHPnzo4ODUAjYH2E6+x5+T8AAGgcvH0DaI24UuoGKSkpCgwMlMlkkpeXl8LDw7Vr1y5HhwUAAAAAANDq2KUotWTJEo0YMULt27dXt27dNHnyZJ06dapRxzhw4IAmTZokPz8/OTk5adu2bdX2i4uLU+/eveXh4aGRI0cqJSXFuu3SpUsymUzW5yaTSVlZWY0aJwAAAADUH5dKAWh97FKU2r9/v6Kjo/XRRx9p9+7dKi8v14MPPqji4uJq+x86dEjl5eVV2jMzM5WTk1PtPsXFxQoKClJcXFyNccTHxys2NlYLFizQ0aNHFRQUpLCwMOXm5jbsxACgBSKlBQCg5XHU1/f42j+ApmSXotTOnTv1+OOPKzAwUEFBQdqwYYMuXLig1NTUKn0tFouio6M1depUmc1ma/upU6cUEhKiN954o9oxwsPDtXDhQk2ZMqXGOFasWKEZM2YoKipKAQEBWrNmjdq2bavXX39dkuTn52dzZVRWVpb8/PwaetoAGsmkVw+q97z3rY+dGdnWbYvez1Tvee/b9P+/1C80emmSMrLybdq/+KZU29Kyqt12o6JrFQpdsV+Lt5/Qe+m37l8ff0jIVNgfD+hkdoHufylJf0v+vNb+5/OKdf9LSdr40b/rPdYbH35u87pVilp/WCHL9+n+l5J0Pq/qhwP5peUKWb5Pyz44aW3LKbiqvs99ewzDuJ6kRq1P0fTXU6wJq8Vi6L/XJCv6raPVxjRrc5r+a/WHMlvqnuC+c+SiRi9N0snsgmq37zuVW+VnoLl48u9p+smaD2Wpx/kCANCc8A4GoCk5ZE2p/Pzrf9x16tSpyjZnZ2dt375daWlpmj59uiwWi86ePauQkBBNnjxZc+fObdCYZWVlSk1NVWhoqM1YoaGhSk5OliQFBwcrIyNDWVlZKioq0o4dOxQWFlbjMePi4hQQEKARI0Y0KCYAdXP8poLQL9/8tqC99l/nq/Sf884xZV0p1f979aBN+8KETM2KT1fWlVI9+fe0Gsd758hFnckt0l8PnNNTm6/3n7mpahG9If6W/G+dyinUD1b+S198U6r5731aa//572Xoi29K9fy2jHqPteAfNR/73OXi/4xf9bgbkz/XucvFitt71tq2cs9p3VhX+eKbEuWXlmvvqcs6cPqycguvSZIyvyxQyudf6/1Pvqx23G3pl5T672+UfvFKnc/jmXc/UdaVUsXGH6t2++PrD9f5WPb2z2OXdPjzb/TppeoLakBrwh2MgaZFcQhAa2T3u+9ZLBbNmjVLo0eP1uDBg6vt4+fnp6SkJI0ZM0ZTp05VcnKyQkNDtXr16gaPm5eXJ7PZLF9fX5t2X19fnTx5/WoAV1dXLV++XOPHj5fFYtHcuXNrvfNedHS0oqOjVVBQIB8fnwbHBsA+brw6p6zCUqd+lcorHJMKVpibdtzqjm+u5qW5ud/tR1X/I1RYap6z5s7gTwm0ctzBGGh69vwWHd/YA2Avdi9KRUdHKyMjQwcPHqy1n7+/vzZu3KixY8eqb9++WrdunZzscD/3iIgIRURENPk4AOyP/AoAmsaNdzCWZL2D8SOPPOLgyAAAQHNm16/vxcTEKCEhQXv37lWPHj1q7ZuTk6MnnnhCkyZNUklJiWbPnn1bY3fp0kUuLi5VFkrPyclR9+7db+vYAAAATYE7GAOo5LAFx/lUD0ATsktRyjAMxcTEaOvWrUpKSlKfPn1q7Z+Xl6cJEyZo0KBB2rJlixITExUfH6+nn366wTG4ublp2LBhSkxMtLZZLBYlJiZq1KhRDT4uAABAU+EOxgAqURsC0BrZpSgVHR2tN998U2+99Zbat2+v7OxsZWdnq7S0tEpfi8Wi8PBw9erVS/Hx8XJ1dVVAQIB2796t9evX649//GO1YxQVFSk9PV3p6emSpPPnzys9PV0XLlyw9omNjdXatWv1xhtv6MSJE5o5c6aKi4sVFRXVJOcNAK0WmTFgF9zBGLCPcrNF7xy5qC++KbntY2Vk5WtnRvU3/KiPlPNf2zz/6V8/0sHP8uq8/86ML2959+CT2QXacOi83j58UaVlZiV8ckknviywWQvxXDV36q3J3pO5evOjf9d4w5P6qjBb9G7qF7r49bfzkvrvb7T3ZP0K4hlZ+dpx/HpMuYVX9ePVH+p0TqEKr5Yr/vAFfVNcZtM/5fzX2n/6sspvWmgz/sjFKn0dpaE/s9n5V/X24Yu6Wn59vqM3VX/HZMBe7LKmVOUC5ePGjbNpX79+vR5//HGbNmdnZy1evFhjxoyRm5ubtT0oKEh79uxR165dqx3jyJEjGj9+vPV5bGysJCkyMlIbNmyQJD388MO6fPmy5s+fr+zsbA0ZMkQ7d+6ssvg5gDsbi3sCaK7qcgfj73//+5o+fbo2btyo8+fPN9odjJ977jmbsWq6g7GPj4927Nih559/vkHjAY6w9l/n9PLOU3JzcdaKh4NstuUWXFU3b486H6vy7r//jLlfd/do2M2QDMPQf/8luUr7o+s+1rEFD8rHs02t+3/yxRX98s3rxYbPl06ssd8PVv7L+u81B87q3OXrBajMP9R8B/KaZF0pVdSGb++I27X9KAX3qfq7qj42fPi5Fr5/QtK35/Ffqz+UJH04L0R+HTzrdJzKOdkWPVqT4w5Jkh784wFNvOc7ev+TL7X58EVt/dVoa//K137GGNtv+Gw5mqXzecU2fR3ltX+d10s7T6qNi5M+W/TDOu/3/179l/KKynQ2r0h/2X+uCSME6sYuRan6fv/5gQceqLZ96NChNe4zbty4Oo0TExOjmJiYesUDoHVw2FoMANAIWssdjOPi4hQXF2dzNRfgaIfOXL8Cqcxs0emcIpttl4uu1asoVenM5cLbKErVvK2gtPyWRamzl4tq3V6dyoJUQ2Xn234L5lR2wW0XpT4691XN4xVcrXNRqtJnOYU2zyuv6Eq7cKXa/v88VvWKr5r62tuHZ6//zJbX807NeUXXr/Tad/Jyo8cENITd774HAGj5KO8B9tda7mAcHR2t6OhoFRQUyMenYX+wAwCA1sGud98DAABA/XEHYwAA0BpRlAKAmxhcBwSgmeAOxgAcgRUPANgLX98DANQb63MB9hEdHa233npL7733nvUOxpLk4+MjT0/btVRqu4NxSEiITCZTtVdNFRUV6cyZM9bnlXcw7tSpk/z9/SVdv4FMZGSkhg8fruDgYK1cuZI7GAMAgNtGUQrAHYMyCoCWhjsYAwCA1oyiFADchIuAADQX3MEYAAC0ZqwpBQAAAACw4vM5APZCUQoAAAAAAAB2R1EKAG7Cp4O3xmsEAAAA4HZRlAJwx2CtKAAAAABoPihKAQAAAAAAwO4oSgEAAAAArOp7508AaCiKUgBwE/KwW+M1AgAAAHC7KEoBAAAAAADA7ihKAbhjcCk6AAAAADQfFKUA4CaGKF7dCq8RAAAAgNtFUQoAAAAAYMVHTwDshaIUAAAAAAAA7I6iFADchKWnbo3XCAAAAMDtoigF4I5BHQUAAAAAmg+KUgAAAAAAK66IBmAvFKUAAAAAAABgdxSlAAD1xgeoAAAAAG4XRSkAAAAAAADYHUUpAHcOLu8BAAAAgGaDohQA3MRgdc9b4yUCAKD14n0egJ1QlAIAAAAAAIDdUZQCAAAAAACA3VGUAoCb8O29WzO4rh8AAADAbaIoBeCOQRkFAADg1vjwCYC9UJQCAAAAAACA3VGUAgAAAAAAgN1RlAKAm3DBOgAAAAA0PYpS/5GQkKABAwaof//+eu211xwdDoAmYLCCeaPhpQQgkT8BAIDb4+roAJqDiooKxcbGau/evfLx8dGwYcM0ZcoUde7c2dGhAQAANEvkT0DrxYdPAOyFK6UkpaSkKDAwUCaTSV5eXgoPD9euXbscHRYAByERA4BbI38CAAC3q1UUpQ4cOKBJkybJz89PTk5O2rZtW5U+cXFx6t27tzw8PDRy5EilpKRYt126dEkmk8n63GQyKSsryx6hAwAAOAT5EwAAcLRW8fW94uJiBQUF6Wc/+5l+9KMfVdkeHx+v2NhYrVmzRiNHjtTKlSsVFhamU6dOqVu3bg6IGEB1LBZDhdcq5O56vV5eeLVCLs5O1fb9quiaXF2q1tXzS8trPH5xmdn676+Ly/RNcZk6tG2jgtIKlZktKimrUNf27vqq+FqVfUvKKpRbeFVe7q7K+qZUvj4eyi8p17UKi7zcXeXm6qyyCovae7jKxdlJhiF9U1JWp/OuMFuUW3hNPp5tVGExVFZhkdliqLOXm80xiq9V6OviMrX3cJWPZxvlFFxTO3cXlVVY1KmdmwquVshsMXSlpExd27vXaeyScrMKrpbL7T+v5bVyi0rKK6zbs66UqmPbNvqq2PZcKiyGrpR8+1qXlJl1rcKs3MKr1jaLxZCzs5MuF16Ts5NkvuEStKvlFl0tN6uNi7PyS8t1tdysTu3c5NHG5T/bzbpWYVGF2WLdp6C0QlfLzbpabpZHGxddK7fIvU3tn63kl5arvburyi0WuTo7y/KfGErLzXJxcrL+fHm0cdHVcrP13zer3Fa53TAMXauw2PS5cb8b+0uS2WLoWoVZhvFtP7PFUIXFIndX2/Eqj33z8UrKzGrn7mJzjJpiru1canO13Cx3V2ddq7BY/1v52ri7OsvJycn6+tfFtQqzXJ2da/z/uLY46hs76o/8Ca3Jzb83ys0WlVVY5NnGRc7OTja/t53/8/u/tNysgtJyeXu20b+/KrHue+lKqc2xy82G9feq2WKojYuz2rg4Kb+0XB5tXKy/J298L5Gk0jLL9fdFQ3J1cZaLk5M1X5Ak9zbOcnd1lsWQiq5df4/z8WwjSdb35ZpcLrymTu3cdK3CLGenb3/Hujhf/z19rfzb96iSsgprn9Iys5ydneTu6lzrleGlN72PXS2/Pk652SJnJyfrOUjXrzC/Wm6W5abj5ZeWq+hahVydnVRmtsiwSN6errpWYZGT0/XX0rONiwpKK2TIkIuzkyzG9fa2btdfS7PFsInB5vgl5db3p8JrFfJyc5Xzf87fxdlJXxeXyTCuj1nTMW70VdE1tXVztcm9vi6uPpfLLy3XtXKzurZ3l9liqKTcbDNnFsNQudmQu6uzSsqqjlkZh2FIhVfL5e7qovYersq6Uqqu7d2t+YqTnFRusaigtFzdvT3k7OSkaxUWOTvLJg8r/c8YZebreWlpuVlt27got/CaOrRto2sVFpWWmdWhbZsaz79S5ZyZLYbMhiE3F2drzuXkJH2eV6L+3bzkfNN7e+XPnZeHq8wWQ26uziopu57L35jrWCyGysyWGt/nr1WY//MzUH2poqzCImcnVft3QHUMw7ie99UQh1RzHlW5raa8pLTMrDKzRd4ernJyql+uc+M4TZHzVJdP3jhuc8qznIxWtvKvk5OTtm7dqsmTJ1vbRo4cqREjRmjVqlWSJIvFop49e+rJJ5/UvHnz9OGHH2rZsmXaunWrJGnWrFkKDg7W1KlTqx3j2rVrunbt2z9aCwoK1LNnT+Xn58vb27vpTg5o5XrPe9/RIaARDTZ568mQ/vqfjal13mdd5HB9ePYrrTt4/rbGfi96tD74NFt/3ndWkuTZxkWmjp4qKC1XbmHVouOaR+/VL988KkmKGX+Xng4bYN12/It8TVp10Pp80y9G6q8Hzmn/6cs2x4h94Lv69YT+2vTxv/XbrRk1xvY/Y/vqufBBemDFfn3xTanS5j9gkxjM2pymbemXtPfpcerTpZ2+Li7TvS/utjnG7yMCJUkL/vGpJCnhyfs12OQjSfpb8uea/9719n/G3K+7e/jc4tW67uLXJRrz8l7d16+zPjz7ldp7uKrwaoXCB3fXjoxs3X9XF80LH6j/9+pBPfa9Xnpx8uBaj1daZtbQF3epd+d22jnr+3WKQZJeTMjUuoPnteVX9+le/4513q8pFRQUyMfHp1W/z5M/oSXbcfxLzdx0VL+bOEi/GNNXZouhwAU7dbXcortNPvrnk/crNj5dW9Ia70q+u7p56UxukSTpbpOPjmfla7DJWxlZBfU6zqi+nZV87qtGi+tO5OPZRvml5TJ18NRfHhum//fqwVvv1EjcXJythY26+r+Z9+m/Vn/YoPGC+3RSyvmvG7Tvzbp7eyi74OqtO9bg86UTrf/+874zennnKevz9u6u+vmYPlq55zNJ0ok//ECebtdznR+v/lBHL3yjtOcflM9NRbKr5WYNfH6nJOnNn4/U/f272Gwvq7Bo+MLd6tDWTQfmjq9TnE9tTtN76ZckSZl/CLMWu/57TbJSPr/+Wr71i5G6767rY9WUx739P6MU3KeT9fnvth3Xmx9dkCQN9e+grb8aXad4Km05+oVi3z4myTaPayyz49O1NS1LiXPGql9XL2v7Xw+c1eLtJ/WXx4YpLLB7o455s7rmT63i63u1KSsrU2pqqkJDQ61tzs7OCg0NVXJysiQpODhYGRkZysrKUlFRkXbs2KGwsLAaj7lkyRL5+PhYHz179mzy8wCAliYjq6BeBSlJevb/jt92QUqS/rjntLUgJV3/xPdMblG1BSlJ1oKUJK3ae8Zm258ST9s8X/CPT6sUpCRpxe7r/WorSEnSX/afkyR9lluk0nKzjmfl22zf9p/Eaf2h66/Drk+zqxxjwT8+tRakrsf4mfXflQWp6mKvzZsf/VuS9OHZ638cFV69fsXcjozr4x88k2cdZ+N/+tbmky+u6Gq5RSezC+scgyTr/C+7IbmF/ZE/oSV5Kj5dkrTw/ROSpLyia7r6nyuFKn/HNmZBSpK1IHXjGPUtSEmiINUIKq+Sz7pSqleTPrtF78ZV34KUJL2882SDx2usgpSk2ypI3ezlm96zC69VWAtSkpR+8Yr130f+/Y0shrTvdG6V42R++e3/Q/P/UTWfOp9XrIKrFbrwdUmVbTWpLEhJUvqFb+OoLEhJ0gv//DZ3qimPW/R+ps3zyoKUJKXdcNy6qixISbZ5XGPZ+p/feTfn1Yu3X//5e/qdY1X2cZRWX5TKy8uT2WyWr6+vTbuvr6+ys68n2q6urlq+fLnGjx+vIUOGaM6cObXeOea5555Tfn6+9XHx4sUmPQcAAAB7In8CAAD20CrWlGoMERERioiIqFNfd3d3ubvXbb0WAACA1or8CQAA3I5Wf6VUly5d5OLiopycHJv2nJwcde/etN+hBAAAaInInwAAgD20+iul3NzcNGzYMCUmJloX77RYLEpMTFRMTEyjjFG5VnxBQf2/Rw7gW5Zrdf9+OFons2uFLNfqdtfC2pSVFt3Wz9ONv89vPlbFVacaj11QUFCncW/sV1RYoIKCb9+OK9uvlRSpoKBAJUWFtzxmWWmRNeYb+97YfitXS279mt34WtzquMWFhXXue6PKfcpLPZrN+2plHK3s3jC1In9CS2K+ViLLf+4GV1BQoMKCqza/z+r6uxkt3+2+/9tDeal7s4+xLm783X2r8ykuLFRBQRubviVFhVV+/xcVfvv/asXVqu8PRQ3ILW6M7XocblXaK646VZtH3ai81LXWc67ve1lD87X6Hr8yn7y53ezk0uTvv3XOn4xWoLCw0EhLSzPS0tIMScaKFSuMtLQ049///rdhGIaxefNmw93d3diwYYORmZlpPPHEE0aHDh2M7OzsRhn/4sWLhiQePHjw4MGDRyt+XLx4sVHyhuaC/IkHDx48ePDg0dSPW+VPTobR8j/227dvn8aPr3pLyMjISG3YsEGStGrVKi1btkzZ2dkaMmSIXnnlFY0cObJRxrdYLLp06ZLat28vJyenRjlmpcrbJV+8eJHbJbdAzF/Lxvy1fMxhy9Zc5s8wDBUWFsrPz0/Ozq1n5QPyJzRnzGHLxvy1bMxfy9Zc5q+u+VOrKEq1ZgUFBfLx8VF+fj6/EFog5q9lY/5aPuawZWP+0FD87LR8zGHLxvy1bMxfy9bS5q/1fNwHAAAAAACAFoOiFAAAAAAAAOyOolQz5+7urgULFsjd3d3RoaABmL+Wjflr+ZjDlo35Q0Pxs9PyMYctG/PXsjF/LVtLmz/WlAIAAAAAAIDdcaUUAAAAAAAA7I6iFAAAAAAAAOyOohQAAAAAAADsjqJUMxYXF6fevXvLw8NDI0eOVEpKiqNDuiMtWbJEI0aMUPv27dWtWzdNnjxZp06dsulz9epVRUdHq3PnzvLy8tJ//dd/KScnx6bPhQsXNHHiRLVt21bdunXTM888o4qKCps++/bt07333it3d3fddddd2rBhQ1Of3h1l6dKlcnJy0qxZs6xtzF3zl5WVpUcffVSdO3eWp6en7r77bh05csS63TAMzZ8/X9/5znfk6emp0NBQffbZZzbH+PrrrzVt2jR5e3urQ4cO+vnPf66ioiKbPp988onGjBkjDw8P9ezZUy+//LJdzq81M5vNev7559WnTx95enqqX79+evHFF3XjcpbMH5oCOZTjkT+1LuRQLQ/5U8t2R+VQBpqlzZs3G25ubsbrr79ufPrpp8aMGTOMDh06GDk5OY4O7Y4TFhZmrF+/3sjIyDDS09ONH/7wh4a/v79RVFRk7fPLX/7S6Nmzp5GYmGgcOXLE+N73vmfcd9991u0VFRXG4MGDjdDQUCMtLc3Yvn270aVLF+O5556z9jl37pzRtm1bIzY21sjMzDReffVVw8XFxdi5c6ddz7e1SklJMXr37m3cc889xlNPPWVtZ+6at6+//tro1auX8fjjjxsff/yxce7cOeODDz4wzpw5Y+2zdOlSw8fHx9i2bZtx7NgxIyIiwujTp49RWlpq7fODH/zACAoKMj766CPjX//6l3HXXXcZjzzyiHV7fn6+4evra0ybNs3IyMgw/v73vxuenp7GX/7yF7ueb2uzaNEio3PnzkZCQoJx/vx545133jG8vLyMP/3pT9Y+zB8aGzlU80D+1HqQQ7U85E8t352UQ1GUaqaCg4ON6Oho63Oz2Wz4+fkZS5YscWBUMAzDyM3NNSQZ+/fvNwzDMK5cuWK0adPGeOedd6x9Tpw4YUgykpOTDcMwjO3btxvOzs5Gdna2tc/q1asNb29v49q1a4ZhGMbcuXONwMBAm7EefvhhIywsrKlPqdUrLCw0+vfvb+zevdsYO3asNaFi7pq/Z5991rj//vtr3G6xWIzu3bsby5Yts7ZduXLFcHd3N/7+978bhmEYmZmZhiTj8OHD1j47duwwnJycjKysLMMwDOPPf/6z0bFjR+ucVo49YMCAxj6lO8rEiRONn/3sZzZtP/rRj4xp06YZhsH8oWmQQzVP5E8tEzlUy0T+1PLdSTkUX99rhsrKypSamqrQ0FBrm7Ozs0JDQ5WcnOzAyCBJ+fn5kqROnTpJklJTU1VeXm4zXwMHDpS/v791vpKTk3X33XfL19fX2icsLEwFBQX69NNPrX1uPEZlH+b89kVHR2vixIlVXl/mrvn7xz/+oeHDh+snP/mJunXrpqFDh2rt2rXW7efPn1d2drbN6+/j46ORI0fazGGHDh00fPhwa5/Q0FA5Ozvr448/tvb5/ve/Lzc3N2ufsLAwnTp1St98801Tn2ardd999ykxMVGnT5+WJB07dkwHDx5UeHi4JOYPjY8cqvkif2qZyKFaJvKnlu9OyqFc7TIK6iUvL09ms9nmF7gk+fr66uTJkw6KCpJksVg0a9YsjR49WoMHD5YkZWdny83NTR06dLDp6+vrq+zsbGuf6uazclttfQoKClRaWipPT8+mOKVWb/PmzTp69KgOHz5cZRtz1/ydO3dOq1evVmxsrH7zm9/o8OHD+vWvfy03NzdFRkZa56C61//G+enWrZvNdldXV3Xq1MmmT58+faoco3Jbx44dm+T8Wrt58+apoKBAAwcOlIuLi8xmsxYtWqRp06ZJEvOHRkcO1TyRP7VM5FAtF/lTy3cn5VAUpYB6iI6OVkZGhg4ePOjoUFAHFy9e1FNPPaXdu3fLw8PD0eGgASwWi4YPH67FixdLkoYOHaqMjAytWbNGkZGRDo4Ot/L2229r06ZNeuuttxQYGKj09HTNmjVLfn5+zB9wByF/annIoVo28qeW707Kofj6XjPUpUsXubi4VLl7RU5Ojrp37+6gqBATE6OEhATt3btXPXr0sLZ3795dZWVlunLlik3/G+ere/fu1c5n5bba+nh7e/MpUQOlpqYqNzdX9957r1xdXeXq6qr9+/frlVdekaurq3x9fZm7Zu473/mOAgICbNoGDRqkCxcuSPp2Dmr7fdm9e3fl5ubabK+oqNDXX39dr3lG/T3zzDOaN2+efvrTn+ruu+/WY489ptmzZ2vJkiWSmD80PnKo5of8qWUih2rZyJ9avjsph6Io1Qy5ublp2LBhSkxMtLZZLBYlJiZq1KhRDozszmQYhmJiYrR161YlJSVVubxx2LBhatOmjc18nTp1ShcuXLDO16hRo3T8+HGbXwq7d++Wt7e39Q1j1KhRNseo7MOcN9yECRN0/PhxpaenWx/Dhw/XtGnTrP9m7pq30aNHV7mF+OnTp9WrVy9JUp8+fdS9e3eb17+goEAff/yxzRxeuXJFqamp1j5JSUmyWCwaOXKktc+BAwdUXl5u7bN7924NGDCAS89vQ0lJiZydbVMNFxcXWSwWScwfGh85VPNB/tSykUO1bORPLd8dlUPZbUl11MvmzZsNd3d3Y8OGDUZmZqbxxBNPGB06dLC5ewXsY+bMmYaPj4+xb98+48svv7Q+SkpKrH1++ctfGv7+/kZSUpJx5MgRY9SoUcaoUaOs2ytvifvggw8a6enpxs6dO42uXbtWe0vcZ555xjhx4oQRFxfHLXGbwI13jjEM5q65S0lJMVxdXY1FixYZn332mbFp0yajbdu2xptvvmnts3TpUqNDhw7Ge++9Z3zyySfGQw89VO3tcIcOHWp8/PHHxsGDB43+/fvb3A73ypUrhq+vr/HYY48ZGRkZxubNm422bdtyS+PbFBkZaZhMJuvtjLds2WJ06dLFmDt3rrUP84fGRg7VPJA/tT7kUC0H+VPLdyflUBSlmrFXX33V8Pf3N9zc3Izg4GDjo48+cnRIdyRJ1T7Wr19v7VNaWmr86le/Mjp27Gi0bdvWmDJlivHll1/aHOfzzz83wsPDDU9PT6NLly7GnDlzjPLycps+e/fuNYYMGWK4ubkZffv2tRkDjePmhIq5a/7++c9/GoMHDzbc3d2NgQMHGn/9619ttlssFuP55583fH19DXd3d2PChAnGqVOnbPp89dVXxiOPPGJ4eXkZ3t7eRlRUlFFYWGjT59ixY8b9999vuLu7GyaTyVi6dGmTn1trV1BQYDz11FOGv7+/4eHhYfTt29f47W9/a3PbYeYPTYEcyvHIn1ofcqiWhfypZbuTcignwzAM+1yTBQAAAAAAAFzHmlIAAAAAAACwO4pSAAAAAAAAsDuKUgAAAAAAALA7ilIAAAAAAACwO4pSAAAAAAAAsDuKUgAAAAAAALA7ilIAAAAAAACwO4pSAAAAAAAAsDuKUgAAAAAAALA7ilIAAAAAAACwO4pSAAAAAAAAsDuKUgAAAAAAALA7ilIAAAAAAACwO4pSAAAAAAAAsDuKUgAAAAAAALA7ilIAAAAAAACwO4pSAAAAAAAAsDuKUgAAAAAAALA7ilIAWrwNGzbIyclJR44cqXb7uHHjNHjwYOvz3r17y8nJqdrHD37wgyr7f/LJJ4qKilKfPn3k4eEhLy8vDRkyRHPnztW5c+duO36LxaINGzYoIiJCPXv2VLt27TR48GAtXLhQV69eve3jAwAAVKel51CStHbtWo0dO1a+vr5yd3dXnz59FBUVpc8//7xRjg+gabk6OgAAcIQhQ4Zozpw5Vdr9/Pxsnq9du1YzZ85Uly5dNG3aNA0cOFAVFRXKyMjQ3/72N61cuVKlpaVycXFpcCwlJSWKiorS9773Pf3yl79Ut27dlJycrAULFigxMVFJSUlycnJq8PEBAAAaS3PKoSQpLS1Nffr0UUREhDp27Kjz589r7dq1SkhI0LFjx6rEBaB5oSgF4I5kMpn06KOP1trnww8/1MyZMzV69GglJCSoffv2NtuXL1+uRYsW3XIsJycnrV+/Xo8//ni1293c3HTo0CHdd9991rYZM2aod+/e1sJUaGjorU8KAACgiTWnHEqS/vznP1dpmzx5soYPH66//e1vmjdv3i3HAeA4fH0PAGrw+9//Xk5OTtq0aVOVZEqSPDw89OKLL972J3xubm42BalKU6ZMkSSdOHHito4PAABgT/bKoWrSu3dvSdKVK1ea5PgAGg9XSgFoNfLz85WXl1elvby8vNq26vq2a9dOnp6eKikpUVJSksaNG6cePXo0Sby3kp2dLUnq0qWLQ8YHAAB3htaQQ3311Vcym826cOGC/vCHP0iSJkyYYLfxATQMRSkArUZtX3ELDAy0eb5r1y517dq1Sr8lS5Zo3rx5OnPmjCoqKmwW96z09ddfy2KxWJ97e3vLzc3tNiKv3ssvvyxvb2+Fh4c3+rEBAAAqtYYcymQy6dq1a5Kkzp0765VXXtEDDzzQKMcG0HQoSgFoNeLi4vTd7363SvucOXNkNptt2kaOHKmFCxdW6du/f39JUkFBgSTJy8urSp++ffsqPz/f+vydd97Rj3/8Y0nXFy0vKSmpsk9RUZHNp4ouLi7q2LFjjeeyePFi7dmzR3/+85/VoUOHGvsBAADcrtaQQ+3YsUNXr17ViRMn9Oabb6q4uLjacwXQvFCUAtBqBAcHa/jw4VXaO3bsWOUy8y5dutT6qWDl+gdFRUVVtr333nsqLy/XsWPH9PTTT9tse/nll/X73/++yj5PPvmknnzySevzXr161Xir4vj4eP3ud7/Tz3/+c82cObPGGAEAABpDa8ihxo8fL0kKDw/XQw89pMGDB8vLy0sxMTE1xgrA8ShKAUA17rrrLrm6uiojI6PKtrFjx0qSXF2r/gqdPn267r//fpu2Bx54QM8884wefPBBa5unp2e14+7evVvTp0/XxIkTtWbNmts5BQAAALtzVA51o379+mno0KHatGkTRSmgmaMoBQDVaNeuncaNG6f9+/crKytLJpOpTvv17dtXffv2rdIeEBBQ66eKkvTxxx9rypQpGj58uN5+++1qEzYAAIDmzBE5VHVKS0uta0wBaL6cHR0AADRX8+fPl9ls1qOPPlrtJeiGYTTaWCdOnNDEiRPVu3dvJSQk1OlTQAAAgObIXjlURUWFvvnmmyrtKSkpOn78eLVfSQTQvPAxPIA7UlZWlt58880q7V5eXpo8ebIkacyYMVq1apWefPJJ9e/fX9OmTdPAgQNVVlam06dPa9OmTXJzc1P37t1vK5bCwkKFhYXpm2++0TPPPKP333/fZnu/fv00atSo2xoDAACgMTSnHKqoqEg9e/bUww8/rMDAQLVr107Hjx/X+vXr5ePjo+eff/62jg+g6VGUAnBHSk9P12OPPValvVevXtaESpJmzpypUaNG6Y9//KPeeecdZWdnq02bNurXr58iIyM1c+ZM9evX77Zi+eqrr3Tx4kVJ0rx586psj4yMpCgFAACaheaUQ7Vt21a/+MUvtHfvXr377rsqLS2Vn5+fHnnkEf3ud79T7969b+v4AJqek9GY3z8BAAAAAAAA6oA1pQAAAAAAAGB3FKUAAAAAAABgdxSlAAAAAAAAYHcUpQAAAAAAAGB3FKUAAAAAAABgdxSlAAAAAAAAYHcUpW6SkJCgAQMGqH///nrttdccHQ4AAECzNmXKFHXs2FE//vGPHR0KAABoYZwMwzAcHURzUVFRoYCAAO3du1c+Pj4aNmyYPvzwQ3Xu3LnW/SwWiy5duqT27dvLycnJTtECAAB7MAxDhYWF8vPzk7Mzn+fdbN++fSosLNQbb7yhd999t877kT8BANB61TV/crVjTM1eSkqKAgMDZTKZJEnh4eHatWuXHnnkkVr3u3Tpknr27GmPEAEAgINcvHhRPXr0cHQYzc64ceO0b9++eu9H/gQAQOt3q/zJLkWpJUuWaMuWLTp58qQ8PT1133336aWXXtKAAQMabYwDBw5o2bJlSk1N1ZdffqmtW7dq8uTJVfrFxcVp2bJlys7OVlBQkF599VUFBwdLup4cVRakJMlkMikrK+uWY7dv317S9Rfb29u7cU4IAAA0CwUFBerZs6f1/b41qUv+VFvudDvInwAAaL3qmj/ZpSi1f/9+RUdHa8SIEaqoqNBvfvMbPfjgg8rMzFS7du2q9D906JCCg4PVpk0bm/bMzEx17txZvr6+VfYpLi5WUFCQfvazn+lHP/pRtXHEx8crNjZWa9as0ciRI7Vy5UqFhYXp1KlT6tatW4PPr/KSc29vb5IqAABaqdb4FbNb5U9NlTtJ5E8AANwJbpU/2WVhhJ07d+rxxx9XYGCggoKCtGHDBl24cEGpqalV+losFkVHR2vq1Kkym83W9lOnTikkJERvvPFGtWOEh4dr4cKFmjJlSo1xrFixQjNmzFBUVJQCAgK0Zs0atW3bVq+//rokyc/Pz+bKqKysLPn5+TX0tAEAuKNsTftCK/ecdnQYqIdb5U+3yp3q49q1ayooKLB5AACAO5tDVuvMz8+XJHXq1KnKNmdnZ23fvl1paWmaPn26LBaLzp49q5CQEE2ePFlz585t0JhlZWVKTU1VaGiozVihoaFKTk6WJAUHBysjI0NZWVkqKirSjh07FBYWVuMx4+LiFBAQoBEjRjQoJgAAWpPZ8ce0cs9nSrvwjaNDQSOoS+5UH0uWLJGPj4/1wXpSAADA7kUpi8WiWbNmafTo0Ro8eHC1ffz8/JSUlKSDBw9q6tSpCgkJUWhoqFavXt3gcfPy8mQ2m6t89c/X11fZ2dmSJFdXVy1fvlzjx4/XkCFDNGfOnFrvvBcdHa3MzEwdPny4wXEBANDaXCkpd3QIaAR1yZ0kKTQ0VD/5yU+0fft29ejRo8aC1XPPPaf8/Hzr4+LFi00aPwAAaP7sfve96OhoZWRk6ODBg7X28/f318aNGzV27Fj17dtX69ats8taDhEREYqIiGjycQAAAFqDPXv21Kmfu7u73N3dFRcXp7i4OJtlGgAAwJ3JrldKxcTEKCEhQXv37r3lLZVzcnL0xBNPaNKkSSopKdHs2bNva+wuXbrIxcVFOTk5Vcbp3r37bR0bAACgtWmq3IkrzQEAQCW7FKUMw1BMTIy2bt2qpKQk9enTp9b+eXl5mjBhggYNGqQtW7YoMTFR8fHxevrppxscg5ubm4YNG6bExERrm8ViUWJiokaNGtXg4wIAALRG5E4AAKCp2eXre9HR0Xrrrbf03nvvqX379tZ1CHx8fOTp6WnT12KxKDw8XL169VJ8fLxcXV0VEBCg3bt3KyQkRCaTqdqrpoqKinTmzBnr8/Pnzys9PV2dOnWSv7+/JCk2NlaRkZEaPny4goODtXLlShUXFysqKqoJzx4AAKB5ulX+1BS5E1/fAwAAlZwMwzCafJAa1oJav369Hn/88Srtu3fv1pgxY+Th4WHTnpaWpq5du1b71b99+/Zp/PjxVdojIyO1YcMG6/NVq1Zp2bJlys7O1pAhQ/TKK69o5MiR9TuhmxQUFMjHx0f5+fny9va+rWMBANBS9Z73viRp/eMjNH5gNwdH03ha8/t8XfKnpsidpNb9ugIAcKer6/u8XYpSrR1JFQAAFKVQP7yuAAC0XnV9n7frQuctQUJCggYMGKD+/fvrtddec3Q4AAAArUpcXJwCAgI0YsQIR4cCAAAcjKLUDSoqKhQbG6ukpCSlpaVp2bJl+uqrrxwdFgAAQKvB3fcAAEAlilI3SElJUWBgoEwmk7y8vBQeHq5du3Y5OiwAAAAAAIBWp95FqQMHDmjSpEny8/OTk5OTtm3bVmt/s9ms559/Xn369JGnp6f69eunF198UY29lFVd44qLi1Pv3r3l4eGhkSNHKiUlxbrt0qVLMplM1ucmk0lZWVmNGicAAMCdjK/vAQCASvUuShUXFysoKEhxcXF16v/SSy9p9erVWrVqlU6cOKGXXnpJL7/8sl599dUa9zl06JDKy8urtGdmZionJ6fBccXHxys2NlYLFizQ0aNHFRQUpLCwMOXm5tbpXAAAAHB7+PoeAACoVO+iVHh4uBYuXKgpU6bUqf+HH36ohx56SBMnTlTv3r314x//WA8++KDNFUo3slgsio6O1tSpU2U2m63tp06dUkhIiN54440Gx7VixQrNmDFDUVFRCggI0Jo1a9S2bVu9/vrrkiQ/Pz+bK6OysrLk5+dXp/MEAAAAAABA3TX5mlL33XefEhMTdfr0aUnSsWPHdPDgQYWHh1cfkLOztm/frrS0NE2fPl0Wi0Vnz55VSEiIJk+erLlz5zYojrKyMqWmpio0NNRmrNDQUCUnJ0uSgoODlZGRoaysLBUVFWnHjh0KCwtr0HgAAACoiq/vAQCASq5NPcC8efNUUFCggQMHysXFRWazWYsWLdK0adNq3MfPz09JSUkaM2aMpk6dquTkZIWGhmr16tUNjiMvL09ms1m+vr427b6+vjp58qQkydXVVcuXL9f48eNlsVg0d+5cde7cucZjxsXFKS4uzuaKLgAAANQsOjpa0dHRKigokI+Pj6PDAQAADtTkRam3335bmzZt0ltvvaXAwEClp6dr1qxZ8vPzU2RkZI37+fv7a+PGjRo7dqz69u2rdevWycnJqanDVUREhCIiIurUl6QKAAAAAACgYZr863vPPPOM5s2bp5/+9Ke6++679dhjj2n27NlasmRJrfvl5OToiSee0KRJk1RSUqLZs2ffVhxdunSRi4tLlYXSc3Jy1L1799s6NgAAAAAAAOqnyYtSJSUlcna2HcbFxUUWi6XGffLy8jRhwgQNGjRIW7ZsUWJiouLj4/X00083OA43NzcNGzZMiYmJ1jaLxaLExESNGjWqwccFAAAAAABA/dX763tFRUU6c+aM9fn58+eVnp6uTp06yd/fX6tWrdLWrVutxZ9JkyZp0aJF8vf3V2BgoNLS0rRixQr97Gc/q/b4FotF4eHh6tWrl+Lj4+Xq6qqAgADt3r1bISEhMplM1V41dau4JCk2NlaRkZEaPny4goODtXLlShUXFysqKqq+LwMAAAAagDU5AQBApXoXpY4cOaLx48dbn8fGxkqSIiMjtWHDBuXl5ens2bPW7a+++qqef/55/epXv1Jubq78/Pz0P//zP5o/f361x3d2dtbixYs1ZswYubm5WduDgoK0Z88ede3atUFxSdLDDz+sy5cva/78+crOztaQIUO0c+fOKoufAwAAoGmwJicAAKjkZBiG4eggWrrKpCo/P1/e3t6ODgcAAIfoPe99SdL6x0do/MBuDo6m8fA+3zR4XQEAaL3q+j7f5GtKAQAAAAAAADejKAUAAAAAAAC7oyh1k4SEBA0YMED9+/fXa6+95uhwAAAAAAAAWqV6L3TemlVUVCg2NlZ79+6Vj4+Phg0bpilTpqhz586ODg0AAKBV4O57AACgEldK3SAlJUWBgYEymUzy8vJSeHi4du3a5eiwAAAAWo3o6GhlZmbq8OHDjg4FAAA4WL2LUgcOHNCkSZPk5+cnJycnbdu2rU77ZWVl6dFHH1Xnzp3l6empu+++W0eOHKnv8LcdW1xcnHr37i0PDw+NHDlSKSkp1m2XLl2SyWSyPjeZTMrKymrUGAEAAAAAANCAolRxcbGCgoIUFxdX532++eYbjR49Wm3atNGOHTuUmZmp5cuXq2PHjtX2P3TokMrLy6u0Z2ZmKicnp8GxxcfHKzY2VgsWLNDRo0cVFBSksLAw5ebm1vlcAAAAAAAAcPvqvaZUeHi4wsPD67XPSy/9f/buPL6K8uz/+DcLCSAQ9mAiYakUCGhQIBQVEYim0UKhdQVrpC1on/AUjBWx/Qm2KtBakUdJoS4IokjUAlo2wbCJAoFAwBj2RUIgCQHJyULWM78/MMccsidnz+f9ep2XOTP33HPNmZBzec099/xdXbt21bvvvmtZ1qNHjyrbms1mxcTEqFevXlqxYoV8fHwkSUeOHNHIkSMVGxur6dOnNyi2efPmadKkSZo4caIkadGiRVq7dq0WL16sGTNmKCgoyGpkVHp6usLDw+t1rAAAAAAAAKidQ+aU+uyzzzRo0CA98MAD6ty5s2655Ra99dZbVQfk7a1169Zp//79euyxx2Q2m3XixAmNHDlSY8eOrbYgVZvi4mIlJSUpIiLCal8RERHauXOnJCk8PFwpKSlKT09XXl6e1q9fr8jIyAbtDwAAAAAAANVzSFHq5MmTWrhwoXr16qXPP/9cf/jDH/THP/5RS5curbJ9UFCQNm/erB07dmj8+PEaOXKkIiIitHDhwgbHkJ2drbKyMgUGBlotDwwMVEZGhiTJ19dXr776qkaMGKEBAwbo6aefrvHJe3FxcQoNDdXgwYMbHBcAAAAAAEBTVO/b9xrCbDZr0KBBmj17tiTplltuUUpKihYtWqTo6OgqtwkJCdGyZcs0fPhw9ezZU++88468vLzsHuuYMWM0ZsyYOrWNiYlRTEyMTCaTAgIC7BwZAAAAAACA53DISKnrr79eoaGhVsv69u2rM2fOVLtNZmamJk+erNGjR6ugoEBPPfVUo2Lo2LGjfHx8Kk2UnpmZqS5dujSqbwAAANQNI80BAEA5hxSlbr/9dh05csRq2dGjR9WtW7cq22dnZ2vUqFHq27evVq5cqYSEBMXHx+tPf/pTg2Pw8/PTwIEDlZCQYFlmNpuVkJCgoUOHNrhfAAAA1F1MTIxSU1O1Z88eZ4cCAACcrN637+Xl5en48eOW96dOnVJycrLat2+vkJAQLViwQKtWrbIq/jz11FO67bbbNHv2bD344INKTEzUm2++qTfffLNS/2azWVFRUerWrZvi4+Pl6+ur0NBQbdq0SSNHjlRwcHC1o6Zqiy02NlbR0dEaNGiQwsPDNX/+fOXn51uexgcAAAAAAADHqHdRau/evRoxYoTlfWxsrCQpOjpaS5YsUXZ2tk6cOGG1zeDBg7Vq1So999xz+tvf/qYePXpo/vz5mjBhQqX+vb29NXv2bA0bNkx+fn6W5WFhYfriiy/UqVOnBsf20EMP6cKFC5o5c6YyMjI0YMAAbdiwodLk5wAAAAAAALAvL8MwDGcH4e7KJzrPyclRmzZtnB0OAABO0X3GWknSu48P1og+nZ0cje3wPW8ffK4AAHiuun7PO2ROKQAAAAAAAKAiilIAAAAAAABwOIpSAAAAAAAAcDiKUgAAAGiQNWvWqHfv3urVq5fefvttZ4cDAADcDEWpa5BcAQAA1K60tFSxsbHavHmz9u/fr1deeUUXL150dlgAAMCNUJSqgOQKAACgbhITE9WvXz8FBwerVatWioqK0saNG50dFgAAcCMUpSoguQIAAE3F9u3bNXr0aAUFBcnLy0urV6+u1CYuLk7du3dX8+bNNWTIECUmJlrWnTt3TsHBwZb3wcHBSk9Pd0ToAADAQ9S7KFWXBKYmc+fOlZeXl6ZNm1bfXdskNpIrAAAAKT8/X2FhYYqLi6tyfXx8vGJjYzVr1izt27dPYWFhioyMVFZWloMjBQAAnqreRanaEpia7NmzR//+9791880319juq6++UklJSaXlqampyszMbHBsJFcAAABXRUVF6aWXXtK4ceOqXD9v3jxNmjRJEydOVGhoqBYtWqSWLVtq8eLFkqSgoCCri3fp6ekKCgqqdn9FRUUymUxWL8BZcgtL9Pule7R6f/0vQH99PFvRixOVdqnADpGhLt7+8qT++OF+lZmNatt8vDdNk97bqyvFZQ6MzL1sOZylx99NVKap0NmhqMxs6I8f7tfbX5602z6ycgs18d1EfZH6Y03hSnGZJr23V68nHFOP59bqxj+v07nLV/RUfLL+ve2E3WLBj+pdlKotgalOXl6eJkyYoLfeekvt2rWrtp3ZbFZMTIzGjx+vsrIf/4AcOXJEI0eO1NKlSxscm62TKwAAAE9UXFyspKQkRUREWJZ5e3srIiJCO3fulCSFh4crJSVF6enpysvL0/r16xUZGVltn3PmzFFAQIDl1bVrV7sfB1CdRdtO6ItDWZoWn1zvbce/vVvbjl5Q7Ef13xa28dLaQ/rswDltPlz94IJnPjmoTamZevfrUw6MzL1MXLJHW49c0MxPU5wdijYfztJnB87ppbWH7LaPF9cc0pYjF/T79/Zali35+rQ2pWZq3qajMgyp1Gzorle2atX+dM1Zf9huseBHDptTKiYmRvfdd59VclMVb29vrVu3Tvv379djjz0ms9msEydOaOTIkRo7dqymT5/eoP3bI7kCAADwRNnZ2SorK1NgYKDV8sDAQGVkZEiSfH199eqrr2rEiBEaMGCAnn76aXXo0KHaPp977jnl5ORYXmlpaXY9BqAm3xdUviujvjJcYHRJU1dQXFprmxwbnGtPdyG3yNkh1OlcNlZ2FceZc6Xy70dxmdnuseBHvo7YyYoVK7Rv3z7t2bOnTu2DgoK0efNmDRs2TOPHj9fOnTsVERGhhQsXNjiGmpKrw4evVkArJldms1nTp0+vMbmKi4tTXFyc1YguAACaOkPV304BzzJmzBiNGTOmTm39/f3l7+9P/gQAACzsXpRKS0vT1KlTtWnTJjVv3rzO24WEhGjZsmUaPny4evbsqXfeeUdeXl52jPSq+iRXMTExiomJkclkUkBAgJ0jAwAAcIyOHTvKx8en0lyemZmZ6tKlS6P6Jn8CAADl7H77XlJSkrKysnTrrbfK19dXvr6+2rZtm15//XX5+vpWe5UsMzNTkydP1ujRo1VQUKCnnnqqUXHYM7kCAADwJH5+fho4cKASEhIsy8xmsxISEjR06FAnRgYAADyJ3UdKjRo1St98843VsokTJ6pPnz569tln5ePjU2mb7OxsjRo1Sn379tXHH3+so0eP6q677pK/v7/++c9/NiiOisnV2LFjJf2YXE2ZMqVBfQIAALirvLw8HT9+3PL+1KlTSk5OVvv27RUSEqLY2FhFR0dr0KBBCg8P1/z585Wfn6+JEyc2ar/cvgcAAMrVuyhVWwKzYMECrVq1ynJlrXXr1urfv79VH9ddd506dOhQabl0tVAUFRWlbt26KT4+Xr6+vgoNDdWmTZs0cuRIBQcHVztqylnJFQAAgLvZu3evRowYYXkfGxsrSYqOjtaSJUv00EMP6cKFC5o5c6YyMjI0YMAAbdiwodL8nPXF7XsAAKBcvYtStSUw2dnZOnHiRIMD8vb21uzZszVs2DD5+flZloeFhemLL75Qp06dGhybvZIrAAAAd3PXXXfJMGqelH7KlCk2H1HOSCkAAFCu3kWp2hKYF154QS+88EKNfWzdurXG9XfffXeVy2+55ZZGxSbZJ7kCAABA3TBSCgAAlLP7ROcAAAAAAADAtShKAQAAAAAAwOEoSgEAAMBh4uLiFBoaqsGDBzs7FAAA4GQUpQAAAOAwMTExSk1N1Z49e5wdCgAAcDKKUgAAAAAAAHA4ilIAAABwGG7fAwAA5ShKAQAAwGG4fQ8AAJSjKFWFNWvWqHfv3urVq5fefvttZ4cDAAAAAADgcXydHYCrKS0tVWxsrLZs2aKAgAANHDhQ48aNU4cOHZwdGgAAAAAAgMdgpNQ1EhMT1a9fPwUHB6tVq1aKiorSxo0bnR0WAAAAAACAR2lQUWr79u0aPXq0goKC5OXlpdWrV9fYfs6cORo8eLBat26tzp07a+zYsTpy5EhDdm2TuOLi4tS9e3c1b95cQ4YMUWJiomXduXPnFBwcbHkfHBys9PR0m8cKAADQFDHROQAAKNegolR+fr7CwsIUFxdXp/bbtm1TTEyMdu3apU2bNqmkpET33HOP8vPzq93mq6++UklJSaXlqampyszMbHBc8fHxio2N1axZs7Rv3z6FhYUpMjJSWVlZdToWAAAANBwTnQMAgHINmlMqKipKUVFRdW6/YcMGq/dLlixR586dlZSUpDvvvLNSe7PZrJiYGPXq1UsrVqyQj4+PJOnIkSMaOXKkYmNjNX369AbFNW/ePE2aNEkTJ06UJC1atEhr167V4sWLNWPGDAUFBVmNjEpPT1d4eHidjxUAAAAAAAC1c8qcUjk5OZKk9u3bV7ne29tb69at0/79+/XYY4/JbDbrxIkTGjlypMaOHVtlQaouiouLlZSUpIiICKt9RUREaOfOnZKk8PBwpaSkKD09XXl5eVq/fr0iIyOr7I/h5wAAAAAAAA3j8KKU2WzWtGnTdPvtt6t///7VtgsKCtLmzZu1Y8cOjR8/XiNHjlRERIQWLlzY4H1nZ2errKxMgYGBVssDAwOVkZEhSfL19dWrr76qESNGaMCAAXr66aerffIew88BAAAAAAAapkG37zVGTEyMUlJStGPHjlrbhoSEaNmyZRo+fLh69uypd955R15eXnaPccyYMRozZozd9wMAAAAAANBUOXSk1JQpU7RmzRpt2bJFN9xwQ63tMzMzNXnyZI0ePVoFBQV66qmnGrX/jh07ysfHp9JE6ZmZmerSpUuj+gYAAEDtmP4AAACUc0hRyjAMTZkyRatWrdLmzZvVo0ePWrfJzs7WqFGj1LdvX61cuVIJCQmKj4/Xn/70pwbH4efnp4EDByohIcGyzGw2KyEhQUOHDm1wvwAAAKgbpj8AAADlGnT7Xl5eno4fP255f+rUKSUnJ6t9+/YKCQnRggULtGrVKkvxJyYmRsuXL9enn36q1q1bW+ZvCggIUIsWLSr1bzabFRUVpW7duik+Pl6+vr4KDQ3Vpk2bNHLkSAUHB1c5aqq2uCQpNjZW0dHRGjRokMLDwzV//nzl5+dbnsYHAAAAAAAA+2tQUWrv3r0aMWKE5X1sbKwkKTo6WkuWLFF2drZOnDhhWV8+Ofldd91l1c+7776rxx9/vFL/3t7emj17toYNGyY/Pz/L8rCwMH3xxRfq1KlTg+KSpIceekgXLlzQzJkzlZGRoQEDBmjDhg2VJj8HAAAAAACA/TSoKHXXXXfJMIxq17/wwgt64YUXLO9raludu+++u8rlt9xyS4PjKjdlyhRNmTKl3jEBAAAAAADANhw60TkAAAAAAAAgUZQCAAAAAACAE1CUAgAAAAAAgMNRlAIAAIDDxMXFKTQ0VIMHD3Z2KAAAwMkoSgEAAMBhYmJilJqaqj179jg7FAAA4GQUpQAAAAAAAOBwFKUAAAAAAADgcBSlAAAAAAAA4HAUpQAAAAAAAOBwFKUAAAAAAADgcBSlAAAAAAAA4HAUpX6wZs0a9e7dW7169dLbb7/t7HAAAABc3rhx49SuXTvdf//9zg4FAAC4IYpSkkpLSxUbG6vNmzdr//79euWVV3Tx4kVnhwUAAODSpk6dqvfee8/ZYQAAADdFUUpSYmKi+vXrp+DgYLVq1UpRUVHauHGjs8MCAABwaXfddZdat27t7DAAAICb8oii1Pbt2zV69GgFBQXJy8tLq1evrtQmLi5O3bt3V/PmzTVkyBAlJiZa1p07d07BwcGW98HBwUpPT3dE6AAAAHbR2PwIAADA3jyiKJWfn6+wsDDFxcVVuT4+Pl6xsbGaNWuW9u3bp7CwMEVGRiorK8vBkQIAADiGLfKjAQMGqH///pVe586dc9RhAAAAD+br7ABsISoqSlFRUdWunzdvniZNmqSJEydKkhYtWqS1a9dq8eLFmjFjhoKCgqxGRqWnpys8PLza/oqKilRUVGR5bzKZbHAUaOpKyswa/9YuhV7fRn/9ZX+b919mNvSTP6+TJH3710hd51/7P//Pv83Q39cf1uuP3KL+wQEqMxua8PYu9ezUShdyi+Tn66248bda2n91PFvRixNVajb0j/tv1r7vvtd3Fws0pGd7bfw2Uyue+JnaNG/WqOP463+/1btfnVaPjtdp+aQhuj6ghWVd9xlrJUm/v6OH/t8vQhu1n4r7O3g2Rysm/0zNfNy3jm8Yhn67ZI8CWjTT/IdvcXY4TnX2+wI9/u4e/fb2Hho/JMSpseQXleqhN3dqZO/Oir2nd6P7MxWW6OF/71JU/y6aMvJGPbEsSc18vBU34dbaN65F+e9QmxbN1CWguXadvKT4yT9T82Y+kqTUc3wXuprG5keSlJycbLN4yJ8AAMC13Pf/sOqouLhYSUlJioiIsCzz9vZWRESEdu7cKUkKDw9XSkqK0tPTlZeXp/Xr1ysyMrLaPufMmaOAgADLq2vXrnY/Dni+L49d0J7T32vpzu/s0v/uUz9O3v9h4pk6bfPEsiSdzM7XpPf2SpL2nL6kXScvafnuM9qUmqm1B88rr6jU0n7C27tVajYkSdM/OagVe9K08+RFzf/imFLPm7T0q9ONPo53f+jjVHa+5qw7bFl+pbjM8vPbO041ej8V95f03ffafNi9R1aeys7XliMXtDr5nMw/nKOm6sU1qTqelac/r/rG2aEofk+aUtJNen3zcZv0t2znd0o9b9Krm47qQm6RNqZmau0352UqLGl0399dLNCWIxf0afI5/XvbSR1Iu6z/HvhxtEzM8n2N3gccpy75ka2RPwEAgGt5fFEqOztbZWVlCgwMtFoeGBiojIwMSZKvr69effVVjRgxQgMGDNDTTz+tDh06VNvnc889p5ycHMsrLS3NrseApqHMbN/+zRX6L61nUaLgh4JPVcUMw6h7XyU2Psii0rLaG9lImZsXctw8fJsqKrXzP7Z6KDXbNpbiCsdW8ZTX459ptcxVdFLx30XFwjBcX13yo7qIiIjQAw88oHXr1umGG26osaBF/gQAAK7lEbfv2cKYMWM0ZsyYOrX19/eXv7+/nSMCAABwbV988UWd25bnT3FxcYqLi1NZGYVMAACaOo8fKdWxY0f5+PgoMzPTanlmZqa6dOnipKgAAACcx5n5UUxMjFJTU7Vnzx677gcAALg+jx8p5efnp4EDByohIUFjx46VJJnNZiUkJGjKlCk22Uf57UtM2InGyM/LlbmoQJJ9fpcq9n8lP7dO+yhvX+blK5PJpPzcH/soZzKZZBQ3s2pfncL8vEYfW8V9FF/5sb8rxWVW62z1GZb3WZCXK5PpOpv06Qy5uXlWv1/e3l5Ojsh5iq/k2fXfWn1cybftv/vC/B+PLddksurbq6RxDxmo+DtU7uq/i6txlxbmy/zDJNZ5ubkymVpU6sNdlR9jfW5XdnWOyI9qQ/4EZyoqaPh3Qfl2pYVmfn+dxDo/q/oclLcpLGh8/umpyj+jkivNnP4ZFdj5/4UkqeRKfqV9FBZUzm8qcvbn4s7qnD8ZHiA3N9fYv3+/sX//fkOSMW/ePGP//v3Gd999ZxiGYaxYscLw9/c3lixZYqSmphqTJ0822rZta2RkZNhk/2lpaYauTt/BixcvXrx48fLQV1pamk3yBkdxdn5UnQULFhh9+/Y1fvKTnzj9nPLixYsXL1687PuqLX/yMgz3v+y3detWjRgxotLy6OhoLVmyRJK0YMECvfLKK8rIyNCAAQP0+uuva8iQITbZv9ls1rlz59S6dWt5edl29IHJZFLXrl2VlpamNm3a2LRv2B/nz71x/twf59C9ucr5MwxDubm5CgoKkre3+8x84Oz8qDbkT6gJ59C9cf7cG+fPvbnK+atr/uQRRSlPZjKZFBAQoJycHP4guCHOn3vj/Lk/zqF74/yhofjdcX+cQ/fG+XNvnD/35m7nz30u9wEAAAAAAMBjUJQCAAAAAACAw1GUcnH+/v6aNWuW/P39nR0KGoDz5944f+6Pc+jeOH9oKH533B/n0L1x/twb58+9udv5Y04pAAAAAAAAOBwjpQAAAAAAAOBwFKUAAAAAAADgcBSlAAAAAAAA4HAUpVxYXFycunfvrubNm2vIkCFKTEx0dkhN0pw5czR48GC1bt1anTt31tixY3XkyBGrNoWFhYqJiVGHDh3UqlUr/frXv1ZmZqZVmzNnzui+++5Ty5Yt1blzZz3zzDMqLS21arN161bdeuut8vf314033qglS5bY+/CalLlz58rLy0vTpk2zLOPcub709HQ9+uij6tChg1q0aKGbbrpJe/futaw3DEMzZ87U9ddfrxYtWigiIkLHjh2z6uPSpUuaMGGC2rRpo7Zt2+p3v/ud8vLyrNocPHhQw4YNU/PmzdW1a1f94x//cMjxebKysjI9//zz6tGjh1q0aKGf/OQnevHFF1VxOkvOH+yBHMr5yJ88CzmU+yF/cm9NKocy4JJWrFhh+Pn5GYsXLza+/fZbY9KkSUbbtm2NzMxMZ4fW5ERGRhrvvvuukZKSYiQnJxv33nuvERISYuTl5VnaPPnkk0bXrl2NhIQEY+/evcbPfvYz47bbbrOsLy0tNfr3729EREQY+/fvN9atW2d07NjReO655yxtTp48abRs2dKIjY01UlNTjTfeeMPw8fExNmzY4NDj9VSJiYlG9+7djZtvvtmYOnWqZTnnzrVdunTJ6Natm/H4448bu3fvNk6ePGl8/vnnxvHjxy1t5s6dawQEBBirV682Dhw4YIwZM8bo0aOHceXKFUubn//850ZYWJixa9cu48svvzRuvPFG45FHHrGsz8nJMQIDA40JEyYYKSkpxocffmi0aNHC+Pe//+3Q4/U0L7/8stGhQwdjzZo1xqlTp4yPP/7YaNWqlfF///d/ljacP9gaOZRrIH/yHORQ7of8yf01pRyKopSLCg8PN2JiYizvy8rKjKCgIGPOnDlOjAqGYRhZWVmGJGPbtm2GYRjG5cuXjWbNmhkff/yxpc2hQ4cMScbOnTsNwzCMdevWGd7e3kZGRoalzcKFC402bdoYRUVFhmEYxvTp041+/fpZ7euhhx4yIiMj7X1IHi83N9fo1auXsWnTJmP48OGWhIpz5/qeffZZ44477qh2vdlsNrp06WK88sorlmWXL182/P39jQ8//NAwDMNITU01JBl79uyxtFm/fr3h5eVlpKenG4ZhGP/617+Mdu3aWc5p+b579+5t60NqUu677z7jt7/9rdWyX/3qV8aECRMMw+D8wT7IoVwT+ZN7IodyT+RP7q8p5VDcvueCiouLlZSUpIiICMsyb29vRUREaOfOnU6MDJKUk5MjSWrfvr0kKSkpSSUlJVbnq0+fPgoJCbGcr507d+qmm25SYGCgpU1kZKRMJpO+/fZbS5uKfZS34Zw3XkxMjO67775Kny/nzvV99tlnGjRokB544AF17txZt9xyi9566y3L+lOnTikjI8Pq8w8ICNCQIUOszmHbtm01aNAgS5uIiAh5e3tr9+7dljZ33nmn/Pz8LG0iIyN15MgRff/99/Y+TI912223KSEhQUePHpUkHThwQDt27FBUVJQkzh9sjxzKdZE/uSdyKPdE/uT+mlIO5euQvaBesrOzVVZWZvUHXJICAwN1+PBhJ0UFSTKbzZo2bZpuv/129e/fX5KUkZEhPz8/tW3b1qptYGCgMjIyLG2qOp/l62pqYzKZdOXKFbVo0cIeh+TxVqxYoX379mnPnj2V1nHuXN/Jkye1cOFCxcbG6s9//rP27NmjP/7xj/Lz81N0dLTlHFT1+Vc8P507d7Za7+vrq/bt21u16dGjR6U+yte1a9fOLsfn6WbMmCGTyaQ+ffrIx8dHZWVlevnllzVhwgRJ4vzB5sihXBP5k3sih3Jf5E/urynlUBSlgHqIiYlRSkqKduzY4exQUAdpaWmaOnWqNm3apObNmzs7HDSA2WzWoEGDNHv2bEnSLbfcopSUFC1atEjR0dFOjg61+eijj/TBBx9o+fLl6tevn5KTkzVt2jQFBQVx/oAmhPzJ/ZBDuTfyJ/fXlHIobt9zQR07dpSPj0+lp1dkZmaqS5cuTooKU6ZM0Zo1a7RlyxbdcMMNluVdunRRcXGxLl++bNW+4vnq0qVLleezfF1Nbdq0acNVogZKSkpSVlaWbr31Vvn6+srX11fbtm3T66+/Ll9fXwUGBnLuXNz111+v0NBQq2V9+/bVmTNnJP14Dmr6e9mlSxdlZWVZrS8tLdWlS5fqdZ5Rf88884xmzJihhx9+WDfddJN+85vf6KmnntKcOXMkcf5ge+RQrof8yT2RQ7k38if315RyKIpSLsjPz08DBw5UQkKCZZnZbFZCQoKGDh3qxMiaJsMwNGXKFK1atUqbN2+uNLxx4MCBatasmdX5OnLkiM6cOWM5X0OHDtU333xj9Udh06ZNatOmjeULY+jQoVZ9lLfhnDfcqFGj9M033yg5OdnyGjRokCZMmGD5mXPn2m6//fZKjxA/evSounXrJknq0aOHunTpYvX5m0wm7d692+ocXr58WUlJSZY2mzdvltls1pAhQyxttm/frpKSEkubTZs2qXfv3gw9b4SCggJ5e1unGj4+PjKbzZI4f7A9cijXQf7k3sih3Bv5k/trUjmUw6ZUR72sWLHC8Pf3N5YsWWKkpqYakydPNtq2bWv19Ao4xh/+8AcjICDA2Lp1q3H+/HnLq6CgwNLmySefNEJCQozNmzcbe/fuNYYOHWoMHTrUsr78kbj33HOPkZycbGzYsMHo1KlTlY/EfeaZZ4xDhw4ZcXFxPBLXDio+OcYwOHeuLjEx0fD19TVefvll49ixY8YHH3xgtGzZ0nj//fctbebOnWu0bdvW+PTTT42DBw8av/zlL6t8HO4tt9xi7N6929ixY4fRq1cvq8fhXr582QgMDDR+85vfGCkpKcaKFSuMli1b8kjjRoqOjjaCg4MtjzNeuXKl0bFjR2P69OmWNpw/2Bo5lGsgf/I85FDug/zJ/TWlHIqilAt74403jJCQEMPPz88IDw83du3a5eyQmiRJVb7effddS5srV64Y//M//2O0a9fOaNmypTFu3Djj/PnzVv2cPn3aiIqKMlq0aGF07NjRePrpp42SkhKrNlu2bDEGDBhg+Pn5GT179rTaB2zj2oSKc+f6/vvf/xr9+/c3/P39jT59+hhvvvmm1Xqz2Ww8//zzRmBgoOHv72+MGjXKOHLkiFWbixcvGo888ojRqlUro02bNsbEiRON3NxcqzYHDhww7rjjDsPf398IDg425s6da/dj83Qmk8mYOnWqERISYjRv3tzo2bOn8Ze//MXqscOcP9gDOZTzkT95HnIo90L+5N6aUg7lZRiG4ZgxWQAAAAAAAMBVzCkFAAAAAAAAh6MoBQAAAAAAAIejKAUAAAAAAACHoygFAAAAAAAAh6MoBQAAAAAAAIejKAUAAAAAAACHoygFAAAAAAAAh6MoBQAAAAAAAIejKAUAAAAAAACHoygFAAAAAAAAh6MoBQAAAAAAAIejKAUAAAAAAACHoygFAAAAAAAAh6MoBQAAAAAAAIejKAUAAAAAAACHoygFAAAAAAAAh6MoBQAAAAAAAIejKAUAAAAAAACHoygFwKMsWbJEXl5e8vLy0o4dOyqtNwxDXbt2lZeXl37xi19YlpdvU9XrySefrNTPl19+qQcffFDBwcHy8/NTQECAhgwZor/97W/KzMysU6yzZ8/Wz372M3Xq1EnNmzdXr169NG3aNF24cKHhHwAAAEADuEsOVVBQoLi4ON1zzz26/vrr1bp1a91yyy1auHChysrKGvchAHA4X2cHAAD20Lx5cy1fvlx33HGH1fJt27bp7Nmz8vf3r7TN3Xffrccee6zS8p/+9KdW72fOnKkXX3xRPXv21OOPP66ePXuqsLBQSUlJevXVV7V06VKdOHGi1hiTkpI0YMAAPfzww2rdurUOHTqkt956S2vXrlVycrKuu+66eh41AABA47h6DnXy5En97//+r0aNGqXY2Fi1adNGn3/+uf7nf/5Hu3bt0tKlSxtw1ACchaIUAI9077336uOPP9brr78uX98f/9QtX75cAwcOVHZ2dqVtfvrTn+rRRx+tsd/4+Hi9+OKLevDBB7Vs2TL5+flZrX/ttdf02muv1SnG//znP5WWDR06VPfff7/++9//6uGHH65TPwAAALbi6jlUly5d9M0336hfv36WZU888YR++9vf6t1339Xzzz+vG2+8sdZ+ALgGbt8D4JEeeeQRXbx4UZs2bbIsKy4u1ieffKLx48c3uN+ZM2eqY8eOeueddyolU5IUEBCgF154ocH9d+/eXZJ0+fLlBvcBAADQUK6eQ3Xs2NGqIFVu3LhxkqRDhw41OEYAjkdRCoBH6t69u4YOHaoPP/zQsmz9+vXKycmpdgRSYWGhsrOzK72Ki4slSUePHtXRo0c1duxYtWrVyiZxGoah7OxsZWRk6Msvv9Qf//hH+fj46K677rJJ/wAAAPXhLjnUtTIyMiRdLVoBcB8UpQB4rPHjx2v16tW6cuWKJOmDDz7Q8OHDFRQUVGX7d955R506dar0WrlypSTp8OHDkqT+/ftbbVdeWKr4Ki0trVOMmZmZ6tSpk66//nrdeeedOnPmjJYvX64+ffo09LABAAAaxR1yqIqKi4s1f/589ejRQ4MHD6739gCchzmlAHisBx98UNOmTdOaNWv085//XGvWrNHrr79ebftf/vKXmjJlSqXlN910kyTJZDJJUqUrfDk5OerUqZPVsj179mjQoEG1xti+fXtt2rRJhYWF2r9/v1auXKm8vLxatwMAALAXd8ihKpoyZYpSU1O1du1aq3mwALg+/sUC8FidOnVSRESEli9froKCApWVlen++++vtv0NN9ygiIiIate3bt1akioVjVq1amWZd2Hjxo165ZVXLOtycnIsVxklyc/PT+3bt7d6X77PX/ziFxo1apRuv/12de7c2epxywAAAI7iDjlUuVdeeUVvvfWWXnzxRd177711O0AALoOiFACPNn78eE2aNEkZGRmKiopS27ZtG9xX+S11KSkpVst9fX0tidjZs2et1k2dOtXq0cTDhw/X1q1bq93Hbbfdpuuvv14ffPABRSkAAOA07pBDLVmyRM8++6yefPJJ/b//9/8aHB8A56EoBcCjjRs3Tk888YR27dql+Pj4RvXVu3dv9erVS6tXr9b8+fN13XXX1brN9OnTrR6R3K5du1q3KSwsVE5OTqNiBQAAaAxXz6E+/fRT/f73v9evfvUrxcXFNSo+AM5DUQqAR2vVqpUWLlyo06dPa/To0Y3u74UXXtCECRM0adIkLV26VM2aNbNabxiG1fvQ0FCFhoZW6ic/P19eXl5q2bKl1fL//Oc/+v777+s9lwIAAIAtuWoOJUnbt2/Xww8/rDvvvFMffPCBvL15fhfgrihKAfB40dHRdWp39OhRvf/++5WWBwYG6u6775Z0dSh7SkqK5syZo8TERD388MPq0aOH8vPzlZKSog8//FCtW7eudUTUsWPHFBERoYceekh9+vSRt7e39u7dq/fff1/du3fX1KlT63+gAAAANuSKOdR3332nMWPGyMvLS/fff78+/vhjq/U333yzbr755joeIQBnoygFAD/YtGmTZbLNioYPH25JqCRp9uzZioyM1IIFC7R48WJlZ2erRYsW+ulPf6qnn35aTz75pLp06VLjvm644Qb9+te/1ubNm7V06VKVlJSoW7dumjJliv7yl7+oQ4cONj8+AAAAe3BkDnXq1CnLNAcxMTGV1s+aNYuiFOBGvIxrx0kCAAAAAAAAdsbNtwAAAAAAAHA4ilIAAAAAAABwOIpSAAAAAAAAcDiKUgAAAAAAAHA4ilIAAAAAAABwOIpSAAAAAAAAcDiKUtdYs2aNevfurV69euntt992djgAAABugRwKAADUl5dhGIazg3AVpaWlCg0N1ZYtWxQQEKCBAwfq66+/VocOHWrczmw269y5c2rdurW8vLwcFC0AAHAEwzCUm5uroKAgeXtzPa8qDcmhyJ8AAPBcdc2ffB0Yk8tLTExUv379FBwcLEmKiorSxo0b9cgjj9S43blz59S1a1dHhAgAAJwkLS1NN9xwg7PDcEkNyaHInwAA8Hy15U8OKUrNmTNHK1eu1OHDh9WiRQvddttt+vvf/67evXvbbB/bt2/XK6+8oqSkJJ0/f16rVq3S2LFjK7WLi4vTK6+8ooyMDIWFhemNN95QeHi4pKvJUXkyJUnBwcFKT0+vdd+tW7eWdPXDbtOmjW0OCAAAuASTyaSuXbtavu8dyZNzKPInAAA8V13zJ4cUpbZt26aYmBgNHjxYpaWl+vOf/6x77rlHqampuu666yq1/+qrrxQeHq5mzZpZLU9NTVWHDh0UGBhYaZv8/HyFhYXpt7/9rX71q19VGUd8fLxiY2O1aNEiDRkyRPPnz1dkZKSOHDmizp07N/j4yoect2nThqQKAAAP5YxbzDw5hyJ/AgDA89WWPzlkYoQNGzbo8ccfV79+/RQWFqYlS5bozJkzSkpKqtTWbDYrJiZG48ePV1lZmWX5kSNHNHLkSC1durTKfURFRemll17SuHHjqo1j3rx5mjRpkiZOnKjQ0FAtWrRILVu21OLFiyVJQUFBVlf10tPTFRQU1NDDBoBqrT14XntPX3J2GABcHDkUAFv68tgFbT6c6ewwAMDCKbN15uTkSJLat29faZ23t7fWrVun/fv367HHHpPZbNaJEyc0cuRIjR07VtOnT2/QPouLi5WUlKSIiAirfUVERGjnzp2SpPDwcKWkpCg9PV15eXlav369IiMjG7Q/AKjO0cxcxSzfp/sX7XR2KADcDDkUgIYqLTPrN+8k6rdL9upyQbGzwwEASU6Y6NxsNmvatGm6/fbb1b9//yrbBAUFafPmzRo2bJjGjx+vnTt3KiIiQgsXLmzwfrOzs1VWVlZp2HpgYKAOHz4sSfL19dWrr76qESNGyGw2a/r06TU+NSYuLk5xcXFWVyMBoDbp319xdggA3JCn5FDkT4BzlJp/fOi66Uqp2rb0c2I0AHCVw4tSMTExSklJ0Y4dO2psFxISomXLlmn48OHq2bOn3nnnHYfM5TBmzBiNGTOmTm1jYmIUExMjk8mkgIAAO0cGAACaMk/JocifAABAOYfevjdlyhStWbNGW7ZsqfWRypmZmZo8ebJGjx6tgoICPfXUU43ad8eOHeXj46PMTOt7qDMzM9WlS5dG9Q0AAGBP5FAAAMATOaQoZRiGpkyZolWrVmnz5s3q0aNHje2zs7M1atQo9e3bVytXrlRCQoLi4+P1pz/9qcEx+Pn5aeDAgUpISLAsM5vNSkhI0NChQxvcLwAAgL2QQwEAAE/mkNv3YmJitHz5cn366adq3bq1MjIyJEkBAQFq0aKFVVuz2ayoqCh169ZN8fHx8vX1VWhoqDZt2qSRI0cqODi4yit+eXl5On78uOX9qVOnlJycrPbt2yskJESSFBsbq+joaA0aNEjh4eGaP3++8vPzNXHiRDsePQAAQMOQQwEAAE/mkKJU+eSad911l9Xyd999V48//rjVMm9vb82ePVvDhg2Tn9+Pk++FhYXpiy++UKdOnarcx969ezVixAjL+9jYWElSdHS0lixZIkl66KGHdOHCBc2cOVMZGRkaMGCANmzYUGniTgAAAFdADgUAADyZl2EYRu3NUJPyiTpzcnLUpk0bZ4cDwMVtOZyliUv2SJJOz73PydEAqA3f8/bB5wo4VmFJmfo8v0GStP2ZEQrp0NLJEQHwZHX9nnfoROcAAAAAAACARFGqkjVr1qh3797q1auX3n77bWeHAwAA4BbIoQAAQH05ZE4pd1FaWqrY2Fht2bJFAQEBGjhwoMaNG6cOHTo4OzQAAACXRQ4FAAAagpFSFSQmJqpfv34KDg5Wq1atFBUVpY0bNzo7LAAAAJdGDgUAABqi3kWp7du3a/To0QoKCpKXl5dWr15dY/uysjI9//zz6tGjh1q0aKGf/OQnevHFF2Xr+dXrGldcXJy6d++u5s2ba8iQIUpMTLSsO3funIKDgy3vg4ODlZ6ebtM4AQBA00QOBQAAYK3eRan8/HyFhYUpLi6uTu3//ve/a+HChVqwYIEOHTqkv//97/rHP/6hN954o9ptvvrqK5WUlFRanpqaqszMzAbHFR8fr9jYWM2aNUv79u1TWFiYIiMjlZWVVadjAQAAaChyKAAAAGv1LkpFRUXppZde0rhx4+rU/uuvv9Yvf/lL3Xffferevbvuv/9+3XPPPVZX1yoym82KiYnR+PHjVVZWZll+5MgRjRw5UkuXLm1wXPPmzdOkSZM0ceJEhYaGatGiRWrZsqUWL14sSQoKCrK6qpeenq6goKA6HScAAEBNyKEAAACs2X1Oqdtuu00JCQk6evSoJOnAgQPasWOHoqKiqg7I21vr1q3T/v379dhjj8lsNuvEiRMaOXKkxo4dq+nTpzcojuLiYiUlJSkiIsJqXxEREdq5c6ckKTw8XCkpKUpPT1deXp7Wr1+vyMjIavuMi4tTaGioBg8e3KCYAAAAquOpORT5EwAAKGf3p+/NmDFDJpNJffr0kY+Pj8rKyvTyyy9rwoQJ1W4TFBSkzZs3a9iwYRo/frx27typiIgILVy4sMFxZGdnq6ysTIGBgVbLAwMDdfjwYUmSr6+vXn31VY0YMUJms1nTp0+v8akxMTExiomJkclkUkBAQINjAwAAuJan5lDkTwAAoJzdi1IfffSRPvjgAy1fvlz9+vVTcnKypk2bpqCgIEVHR1e7XUhIiJYtW6bhw4erZ8+eeuedd+Tl5WXvcDVmzBiNGTPG7vsBAACoCTkUAADwdHa/fe+ZZ57RjBkz9PDDD+umm27Sb37zGz311FOaM2dOjdtlZmZq8uTJGj16tAoKCvTUU081Ko6OHTvKx8en0iSfmZmZ6tKlS6P6BgAAsDVyKAAA4OnsXpQqKCiQt7f1bnx8fGQ2m6vdJjs7W6NGjVLfvn21cuVKJSQkKD4+Xn/6058aHIefn58GDhyohIQEyzKz2ayEhAQNHTq0wf0CAADYAzkUAADwdPW+fS8vL0/Hjx+3vD916pSSk5PVvn17hYSEaMGCBVq1apUlcRk9erRefvllhYSEqF+/ftq/f7/mzZun3/72t1X2bzabFRUVpW7duik+Pl6+vr4KDQ3Vpk2bNHLkSAUHB1d5xa+2uCQpNjZW0dHRGjRokMLDwzV//nzl5+dr4sSJ9f0YAAAA6oUcCgAA4BpGPW3ZssWQVOkVHR1tGIZhzJo1y+jWrZulvclkMqZOnWqEhIQYzZs3N3r27Gn85S9/MYqKiqrdx8aNG40rV65UWr5v3z4jLS2tQXGVe+ONN4yQkBDDz8/PCA8PN3bt2lXfj6CSnJwcQ5KRk5PT6L4AeL7NhzKNbs+uMbo9u8bZoQCoA1t9z5NDWSN/AhzrSnGpJf/4Ljvf2eEA8HB1/Z73MgzDcFwJzDOVPz0mJydHbdq0cXY4AFzclsNZmrhkjyTp9Nz7nBwNgNrwPW8ffK6AYxWWlKnP8xskSdufGaGQDi2dHBEAT1bX73m7zykFAAAAAAAAXIui1DXWrFmj3r17q1evXnr77bedHQ4AAIDLI38CAAANUe+Jzj1ZaWmpYmNjtWXLFgUEBGjgwIEaN26cOnTo4OzQAAAAXBL5EwAAaChGSlWQmJiofv36KTg4WK1atVJUVJQ2btzo7LAAAABcFvkTAABoqHoXpbZv367Ro0crKChIXl5eWr16dZ22S09P16OPPqoOHTqoRYsWuummm7R379767r7RscXFxal79+5q3ry5hgwZosTERMu6c+fOKTg42PI+ODhY6enpNo0RAAA0PeRPAAAAldW7KJWfn6+wsDDFxcXVeZvvv/9et99+u5o1a6b169crNTVVr776qtq1a1dl+6+++kolJSWVlqempiozM7PBscXHxys2NlazZs3Svn37FBYWpsjISGVlZdX5WAAAAOqL/AkAAKCyes8pFRUVpaioqHpt8/e//11du3bVu+++a1nWo0ePKtuazWbFxMSoV69eWrFihXx8fCRJR44c0ciRIxUbG6vp06c3KLZ58+Zp0qRJmjhxoiRp0aJFWrt2rRYvXqwZM2YoKCjI6speenq6wsPD63WsAAAA1yJ/AgAAqMwhc0p99tlnGjRokB544AF17txZt9xyi956662qA/L21rp167R//3499thjMpvNOnHihEaOHKmxY8dWm1DVpri4WElJSYqIiLDaV0REhHbu3ClJCg8PV0pKitLT05WXl6f169crMjKyQfsDAABoDPInAADg6RxSlDp58qQWLlyoXr166fPPP9cf/vAH/fGPf9TSpUurbB8UFKTNmzdrx44dGj9+vEaOHKmIiAgtXLiwwTFkZ2errKxMgYGBVssDAwOVkZEhSfL19dWrr76qESNGaMCAAXr66adrfHJMXFycQkNDNXjw4AbHBQAAUBXyJwAA4OnqffteQ5jNZg0aNEizZ8+WJN1yyy1KSUnRokWLFB0dXeU2ISEhWrZsmYYPH66ePXvqnXfekZeXl91jHTNmjMaMGVOntjExMYqJiZHJZFJAQICdIwMAAE0J+RMAAPB0Dhkpdf311ys0NNRqWd++fXXmzJlqt8nMzNTkyZM1evRoFRQU6KmnnmpUDB07dpSPj0+liT4zMzPVpUuXRvUNAABga+RPAADA0zmkKHX77bfryJEjVsuOHj2qbt26Vdk+Oztbo0aNUt++fbVy5UolJCQoPj5ef/rTnxocg5+fnwYOHKiEhATLMrPZrISEBA0dOrTB/QIAANgD+RMAAPB09b59Ly8vT8ePH7e8P3XqlJKTk9W+fXuFhIRowYIFWrVqlVXy8tRTT+m2227T7Nmz9eCDDyoxMVFvvvmm3nzzzUr9m81mRUVFqVu3boqPj5evr69CQ0O1adMmjRw5UsHBwdVe9astttjYWEVHR2vQoEEKDw/X/PnzlZ+fb3maDAAAgD2QPwEAAFTBqKctW7YYkiq9oqOjDcMwjFmzZhndunWrtN1///tfo3///oa/v7/Rp08f480336x2Hxs3bjSuXLlSafm+ffuMtLS0BsdmGIbxxhtvGCEhIYafn58RHh5u7Nq1q87HXp2cnBxDkpGTk9PovgB4vs2HMo1uz64xuj27xtmhAKgDW3zPkz9VRv4EONaV4lJL/vFddr6zwwHg4er6Pe9lGIbhuBKYZyqfqDMnJ0dt2rRxdjgAXNyWw1mauGSPJOn03PucHA2A2vA9bx98roBjFZaUqc/zGyRJ258ZoZAOLZ0cEQBPVtfveYfMKQUAAAAAAABURFEKAAAAAAAADkdRCgAAAAAAAA5HUQoAAAAAAAAOR1EKAAAAAAAADkdR6hpr1qxR79691atXL7399tvODgcAAMDlkT8BAICG8HV2AK6ktLRUsbGx2rJliwICAjRw4ECNGzdOHTp0cHZoAAAALon8CQAANBQjpSpITExUv379FBwcrFatWikqKkobN250dlgAAAAui/wJAAA0VL2LUtu3b9fo0aMVFBQkLy8vrV69ul7bz507V15eXpo2bVp9d22T2OLi4tS9e3c1b95cQ4YMUWJiomXduXPnFBwcbHkfHBys9PR0m8cJAACaFvInAACAyupdlMrPz1dYWJji4uLqvbM9e/bo3//+t26++eYa23311VcqKSmptDw1NVWZmZkNji0+Pl6xsbGaNWuW9u3bp7CwMEVGRiorK6t+BwIAAFAP5E8AAACV1bsoFRUVpZdeeknjxo2r13Z5eXmaMGGC3nrrLbVr167admazWTExMRo/frzKysosy48cOaKRI0dq6dKlDY5t3rx5mjRpkiZOnKjQ0FAtWrRILVu21OLFiyVJQUFBVlf20tPTFRQUVK/jBAAAuBb5EwAAQGUOm1MqJiZG9913nyIiImps5+3trXXr1mn//v167LHHZDabdeLECY0cOVJjx47V9OnTG7T/4uJiJSUlWe3f29tbERER2rlzpyQpPDxcKSkpSk9PV15entavX6/IyMhq+4yLi1NoaKgGDx7coJgAAABqQv4EAAA8mUOevrdixQrt27dPe/bsqVP7oKAgbd68WcOGDdP48eO1c+dORUREaOHChQ2OITs7W2VlZQoMDLRaHhgYqMOHD0uSfH199eqrr2rEiBEym82aPn16jU+OiYmJUUxMjEwmkwICAhocGwAAwLXInwAAgKeze1EqLS1NU6dO1aZNm9S8efM6bxcSEqJly5Zp+PDh6tmzp9555x15eXnZMdKrxowZozFjxth9PwAAANUhfwIAAE2B3W/fS0pKUlZWlm699Vb5+vrK19dX27Zt0+uvvy5fX1+reQ8qyszM1OTJkzV69GgVFBToqaeealQcHTt2lI+PT6WJPjMzM9WlS5dG9Q0AAGBL5E8AAKApsHtRatSoUfrmm2+UnJxseQ0aNEgTJkxQcnKyfHx8Km2TnZ2tUaNGqW/fvlq5cqUSEhIUHx+vP/3pTw2Ow8/PTwMHDlRCQoJlmdlsVkJCgoYOHdrgfgEAAGyN/AkAADQF9b59Ly8vT8ePH7e8P3XqlJKTk9W+fXuFhIRowYIFWrVqlSV5ad26tfr372/Vx3XXXacOHTpUWi5dTXSioqLUrVs3xcfHy9fXV6Ghodq0aZNGjhyp4ODgaq/61RZbbGysoqOjNWjQIIWHh2v+/PnKz8/XxIkT6/sxAAAA1Bn5EwAAQGX1Lkrt3btXI0aMsLyPjY2VJEVHR2vJkiXKzs7WiRMnGhyQt7e3Zs+erWHDhsnPz8+yPCwsTF988YU6derU4NgeeughXbhwQTNnzlRGRoYGDBigDRs2VJq8EwAAwJbInwAAACrzMgzDcHYQ7q786TE5OTlq06aNs8MB4OK2HM7SxCVXn6Z1eu59To4GQG34nrcPPlfAsQpLytTn+Q2SpO3PjFBIh5ZOjgiAJ6vr97zd55QCAAAAAAAArkVRCgAAAAAAAA5HUQoAAAAAAAAOR1EKAAAAAAAADkdRCgAAAAAAAA5HUQoAAAAAAAAOR1GqCmvWrFHv3r3Vq1cvvf32284OBwAAwOWRPwEAgPrydXYArqa0tFSxsbHasmWLAgICNHDgQI0bN04dOnRwdmgAAAAuifwJAAA0BCOlrpGYmKh+/fopODhYrVq1UlRUlDZu3OjssAAAAFwW+RMAAGiIBhWltm/frtGjRysoKEheXl5avXp1je3nzJmjwYMHq3Xr1urcubPGjh2rI0eONGTXNokrLi5O3bt3V/PmzTVkyBAlJiZa1p07d07BwcGW98HBwUpPT7d5rAAAoGkhfwIAALDWoKJUfn6+wsLCFBcXV6f227ZtU0xMjHbt2qVNmzappKRE99xzj/Lz86vd5quvvlJJSUml5ampqcrMzGxwXPHx8YqNjdWsWbO0b98+hYWFKTIyUllZWXU6FgAAgIYgfwIAALDWoDmloqKiFBUVVef2GzZssHq/ZMkSde7cWUlJSbrzzjsrtTebzYqJiVGvXr20YsUK+fj4SJKOHDmikSNHKjY2VtOnT29QXPPmzdOkSZM0ceJESdKiRYu0du1aLV68WDNmzFBQUJDVlb309HSFh4fX+VgBAACqQv4EAABgzSlzSuXk5EiS2rdvX+V6b29vrVu3Tvv379djjz0ms9msEydOaOTIkRo7dmyVCVVdFBcXKykpSREREVb7ioiI0M6dOyVJ4eHhSklJUXp6uvLy8rR+/XpFRkY2aH8AAAC2Qv4EAAA8jcOfvmc2mzVt2jTdfvvt6t+/f7XtgoKCtHnzZg0bNkzjx4/Xzp07FRERoYULFzZ439nZ2SorK1NgYKDV8sDAQB0+fFiS5Ovrq1dffVUjRoyQ2WzW9OnTq31yTFxcnOLi4lRWVtbgmAAAAGpD/gQAADyRw4tSMTExSklJ0Y4dO2ptGxISomXLlmn48OHq2bOn3nnnHXl5edk9xjFjxmjMmDG1touJiVFMTIxMJpMCAgLsHhcAAGiayJ8AAIAncujte1OmTNGaNWu0ZcsW3XDDDbW2z8zM1OTJkzV69GgVFBToqaeeatT+O3bsKB8fn0oTfWZmZqpLly6N6hsAAMAeyJ8AAICnckhRyjAMTZkyRatWrdLmzZvVo0ePWrfJzs7WqFGj1LdvX61cuVIJCQmKj4/Xn/70pwbH4efnp4EDByohIcGyzGw2KyEhQUOHDm1wvwAAALZG/gQAADxdg27fy8vL0/Hjxy3vT506peTkZLVv314hISFasGCBVq1aZUleYmJitHz5cn366adq3bq1MjIyJEkBAQFq0aJFpf7NZrOioqLUrVs3xcfHy9fXV6Ghodq0aZNGjhyp4ODgKq/61RaXJMXGxio6OlqDBg1SeHi45s+fr/z8fMvTZAAAAOyB/AkAAOAaRgNs2bLFkFTpFR0dbRiGYcyaNcvo1q2bpX1VbSUZ7777brX72Lhxo3HlypVKy/ft22ekpaU1KK5yb7zxhhESEmL4+fkZ4eHhxq5du+r7EVjJyckxJBk5OTmN6gdA07D5UKbR7dk1Rrdn1zg7FAB1YKvvefIna+RPgGNdKS615B/fZec7OxwAHq6u3/NehmEY9i17eb7yiTpzcnLUpk0bZ4cDwMVtOZyliUv2SJJOz73PydEAqA3f8/bB5wo4VmFJmfo8v0GStP2ZEQrp0NLJEQHwZHX9nnfoROcAAAAAAACARFEKAAAAAAAATkBRCgAAAAAAAA5HUQoAAAAAAAAOR1EKAAAAAAAADkdRCgAAAAAAAA5HUQoAAAAAAAAOR1EKAAAAAAAADkdRCgAAAAAAAA5HUQoAAAAAAAAOR1EKAAAAAAAADkdR6gdr1qxR79691atXL7399tvODgcAAMDlkT8BAIDG8HV2AK6gtLRUsbGx2rJliwICAjRw4ECNGzdOHTp0cHZoAAAALon8CQAANBYjpSQlJiaqX79+Cg4OVqtWrRQVFaWNGzc6OywAAACXRf4EAAAayyOKUtu3b9fo0aMVFBQkLy8vrV69ulKbuLg4de/eXc2bN9eQIUOUmJhoWXfu3DkFBwdb3gcHBys9Pd0RoQMAADgF+RMAAHA2jyhK5efnKywsTHFxcVWuj4+PV2xsrGbNmqV9+/YpLCxMkZGRysrKcnCkAAAAroH8CQAAOJtHFKWioqL00ksvady4cVWunzdvniZNmqSJEycqNDRUixYtUsuWLbV48WJJUlBQkNWVvfT0dAUFBVW7v6KiIplMJqsXgJq98vlhvbrxiIpLzZq2Yr/+k3RWklRUWqY/frhfq/afrbRNSnqOus9Yq/sXfi2z2ZAk7Tl9STf+eZ1+GfeVTlzIU/cZayu9vjqeLUn67MA5xSzfp+4z1mrwy19IkrYfvaA/vJ+kOesOaeanKTIMQxtSMhTzwT7lFpZY7b9ibN+ey9Hk9/bqWGauEk9d0kP/3qlfxn2lLYev/s/Z599W7qO0zKzYj5K1IvGMpvwQR/cZa/XPjUcsbQpLyur9WT4Vn6zuM9bqfM6VOm/z2YFzmrJ8n5K++95yHINf/kLdZ6zVisQz6j5jrSa/t1fFpWar7V5POKaX16Zq4w/HZ7rmM7KX7Ucv6MllScrOK5IknbyQp8nv7dXBs5cdsn9XZhiGnlv5jd796lStbbPzivSH95O0/egFy7IPdn+nP318QGU//JuSpJIys56KT9ZHe9Nq7C8l/eq/g+NZeTqVna/J7+3VgbTLDT4WOBf5E+D6ktMuq/uMtfrlgh2a9WmKXk84VqnN2oPnFbN8n45n5emJZXuVeOqS0i4VqPuMtXpyWVKV/f5u6Z5Ky9Z/c17dZ6zV75fuUVFpmQqKSzVl+T6tPXheb24/oe4z1mrHsWxL+4p5jtWy+GTF7/lx2esJx/S3/6Yq9qNk/WXVN5r83l6duJBnWX/td/6h8yb9bHaCRvxzq55YtlfdZ6y1fNf8a+tx/fW/39bps/s0OV3/++F+FZaU6dtzOVa54u+X7tXOExer3K78O/FPHx/QE8v26tzlyvlWXlGpRvxzq7rPWKvtRy/oiWV7tef0JR3LzNXk9/Yq9VzVf9/KP+NfvPGlJr+3V6ey8y3rFu84pedWfiPDMKrcti7++fkR/fPzH/PM8vzpm7M5Vu12nbyoJ5btrZRLvvDZt/rtkj16YtlepVc47vM5V/TEsr3afbLqz6yx8otKFbN8nx59e7ee+fiAJe+XpKzcQj25LMmS31dUVZ7jbG9uP2H5f4wys6GnPzqgDyv8G0FlXkZjfutdkJeXl1atWqWxY8dKkoqLi9WyZUt98sknlmWSFB0drcuXL+vTTz9VaWmp+vbtq61bt1om6vz666+rnajzhRde0F//+tdKy3NyctSmTRt7HBbg1r7PL9YtL26SJD378z76+4bDkqTTc+/Tu1+d0l//m2p5X1H3GWstP7/92CBFhAZaLavJ6bn3VWp75KWfq/f/22C17L9T7tDoBTskSZOG9dBf7gu1rKsYm5+vt4pLzerc2l9ZuUXV7qtiH58mp2vqiuQa43z25330h7t+UqdjKlfxuK79zOqyTU3+9st+emxod0mS2Wyo55/XWa3//R099P9+EVrFlrZVHu8vbr5eC8bfqpH/3KqTPyRudT1mT/X1iWyNf2u3pNo/iz9+uF+fHThn1bb8s/3XhFt1703XS5I+3pumZz45WGufN/55nUrNhoLbtlBLPx8dy8qrUxzuzmQyKSAgwKO/58mfANdU1ff3idn3ysfbq8Y2FZX/jS4sKVOf53/Mg76cPkJd27essp/nfxGqvMJSvfbF0Wr7q5jnlC9bue+sYj86YFlWVS4hSd06tNS2Z0ZY7bf8O/+mWZ8rt6i0yv2Wt9301J3qFdi6xuMub/tcVB/NWX+4yjZVfX99tCdN0/9z0PL+tp900PJJP7Nq88rnhxW35USlbcvzxObNvHX4xahqYyrXs9N12vz0XVbrlk8aott+0rGGI6taTkGJwv52dV6/AzPvUUDLZhrxz62WwlfFYy3f17BeHbXsd0MkSUcychU5f7ulzZAe7RX/xFBJ0qNv79aOH4pC9vjOn7fpqFXBddGjA/Xz/l0kSU8uS9KGbzOq3PeU5fu05uB5u8XVEOWf7X+n3KFTF/P1xw/3S3Kd+ByprvmTR4yUqkl2drbKysoUGBhotTwwMFAZGVd/uX19ffXqq69qxIgRGjBggJ5++ukanxzz3HPPKScnx/JKS6v5yjLQ1JWYfxx9U34VrNz3+cV16iO3qPEjdKoqwRcU/5j0XMitPrbyEUTXFqSuVbEP05XaY76UX3N/jvZ9fs0x13b8tpaRUyhJ+u5SgUP368ryi+o+uq7886tKxd/PnDr8rkpS6Q9XLtMvX+GceDjyJ8B12WpMQdE1o6Mr+j6/WBdryVGqynOu/T6pLtLvLlb+Din/zqqqIHWtK/UYaX6pjrlmuctXrNunVzFSKju36j7L86TCkuo/24qq+hzq8z1fUcV8u/zn0xfzq2suyfrYrv1Mz35/pcp29nDt/x9UvPOgpjsDaspznK2guLRO/y8AydfZAbiKMWPGaMyYMXVq6+/vL39/fztHBAAA4NrInwAAQGN4/Eipjh07ysfHR5mZmVbLMzMz1aVLFydFBQAA4LrInwAAgCN4/EgpPz8/DRw4UAkJCZY5EcxmsxISEjRlyhSb7KN8CC0TdgJVy80tlLno6vDkwoI8y88mk0mF+dbvKypfLkkFebkymUxWy2pSVduqluXn5lqWFRXkWcVQMba67qtiH1fyc2vdvvCafdZFxT7rum1dP7fC/B/jMZuNStsVNyDehijfb8kVP8vnWz7pZVP/W5ufl1vtv5lrlVzJr9S2/H35vynJ+ne1pj4r/j6UlXnL/MOtH55+TsqPz8Om4awR+RPgGqr6/jaZTPL18a6xzbXtpatzSlVsm5trkqn5j7d8VVxXmJ+noqKSavcvVf3dce2ysipyiWv7qeo7v7r25evyck0ymWoeX1FV7lldDBVdm7+VFhqV2hXV0GdNfV+7jZe3V6XPIT8vVyZTixr7rkpuXpGlj1yTSX5mf5mLCizTV1SMp7xdaeGPy/NyTdcct9myrrSwcj5hS9d+nhVzlKpymXI1rXMWy3nMzdWVGv4/pymoc/5keIDc3Fxj//79xv79+w1Jxrx584z9+/cb3333nWEYhrFixQrD39/fWLJkiZGammpMnjzZaNu2rZGRkWGT/aelpRm6ess0L168ePHixctDX2lpaTbJG1wF+RMvXrx48eLFy96v2vInj3j63tatWzVixIhKy6Ojo7VkyRJJ0oIFC/TKK68oIyNDAwYM0Ouvv64hQ4bYZP9ms1nnzp1T69at5eXlVfsG9WAymdS1a1elpaXxZBo3xPlzb5w/98c5dG+ucv4Mw1Bubq6CgoLk7e05Mx+QP8GVcQ7dG+fPvXH+3JurnL+65k8eUZTyZE3hMdSejPPn3jh/7o9z6N44f2gofnfcH+fQvXH+3Bvnz7252/nznMt9AAAAAAAAcBsUpQAAAAAAAOBwFKVcnL+/v2bNmiV/f39nh4IG4Py5N86f++McujfOHxqK3x33xzl0b5w/98b5c2/udv6YUwoAAAAAAAAOx0gpAAAAAAAAOBxFKQAAAAAAADgcRSkAAAAAAAA4HEUpAAAAAAAAOBxFKRcWFxen7t27q3nz5hoyZIgSExOdHVKTNGfOHA0ePFitW7dW586dNXbsWB05csSqTWFhoWJiYtShQwe1atVKv/71r5WZmWnV5syZM7rvvvvUsmVLde7cWc8884xKS0ut2mzdulW33nqr/P39deONN2rJkiX2PrwmZe7cufLy8tK0adMsyzh3ri89PV2PPvqoOnTooBYtWuimm27S3r17LesNw9DMmTN1/fXXq0WLFoqIiNCxY8es+rh06ZImTJigNm3aqG3btvrd736nvLw8qzYHDx7UsGHD1Lx5c3Xt2lX/+Mc/HHJ8nqysrEzPP/+8evTooRYtWugnP/mJXnzxRVV8xgrnD/ZADuV85E+ehRzK/ZA/ubcmlUMZcEkrVqww/Pz8jMWLFxvffvutMWnSJKNt27ZGZmams0NrciIjI413333XSElJMZKTk417773XCAkJMfLy8ixtnnzySaNr165GQkKCsXfvXuNnP/uZcdttt1nWl5aWGv379zciIiKM/fv3G+vWrTM6duxoPPfcc5Y2J0+eNFq2bGnExsYaqampxhtvvGH4+PgYGzZscOjxeqrExESje/fuxs0332xMnTrVspxz59ouXbpkdOvWzXj88ceN3bt3GydPnjQ+//xz4/jx45Y2c+fONQICAozVq1cbBw4cMMaMGWP06NHDuHLliqXNz3/+cyMsLMzYtWuX8eWXXxo33nij8cgjj1jW5+TkGIGBgcaECROMlJQU48MPPzRatGhh/Pvf/3bo8Xqal19+2ejQoYOxZs0a49SpU8bHH39stGrVyvi///s/SxvOH2yNHMo1kD95DnIo90P+5P6aUg5FUcpFhYeHGzExMZb3ZWVlRlBQkDFnzhwnRgXDMIysrCxDkrFt2zbDMAzj8uXLRrNmzYyPP/7Y0ubQoUOGJGPnzp2GYRjGunXrDG9vbyMjI8PSZuHChUabNm2MoqIiwzAMY/r06Ua/fv2s9vXQQw8ZkZGR9j4kj5ebm2v06tXL2LRpkzF8+HBLQsW5c33PPvuscccdd1S73mw2G126dDFeeeUVy7LLly8b/v7+xocffmgYhmGkpqYakow9e/ZY2qxfv97w8vIy0tPTDcMwjH/9619Gu3btLOe0fN+9e/e29SE1Kffdd5/x29/+1mrZr371K2PChAmGYXD+YB/kUK6J/Mk9kUO5J/In99eUcihu33NBxcXFSkpKUkREhGWZt7e3IiIitHPnTidGBknKycmRJLVv316SlJSUpJKSEqvz1adPH4WEhFjO186dO3XTTTcpMDDQ0iYyMlImk0nffvutpU3FPsrbcM4bLyYmRvfdd1+lz5dz5/o+++wzDRo0SA888IA6d+6sW265RW+99ZZl/alTp5SRkWH1+QcEBGjIkCFW57Bt27YaNGiQpU1ERIS8vb21e/duS5s777xTfn5+ljaRkZE6cuSIvv/+e3sfpse67bbblJCQoKNHj0qSDhw4oB07digqKkoS5w+2Rw7lusif3BM5lHsif3J/TSmH8nXIXlAv2dnZKisrs/oDLkmBgYE6fPiwk6KCJJnNZk2bNk233367+vfvL0nKyMiQn5+f2rZta9U2MDBQGRkZljZVnc/ydTW1MZlMunLlilq0aGGPQ/J4K1as0L59+7Rnz55K6zh3ru/kyZNauHChYmNj9ec//1l79uzRH//4R/n5+Sk6OtpyDqr6/Cuen86dO1ut9/X1Vfv27a3a9OjRo1If5evatWtnl+PzdDNmzJDJZFKfPn3k4+OjsrIyvfzyy5owYYIkcf5gc+RQron8yT2RQ7kv8if315RyKIpSQD3ExMQoJSVFO3bscHYoqIO0tDRNnTpVmzZtUvPmzZ0dDhrAbDZr0KBBmj17tiTplltuUUpKihYtWqTo6GgnR4fafPTRR/rggw+0fPly9evXT8nJyZo2bZqCgoI4f0ATQv7kfsih3Bv5k/trSjkUt++5oI4dO8rHx6fS0ysyMzPVpUsXJ0WFKVOmaM2aNdqyZYtuuOEGy/IuXbqouLhYly9ftmpf8Xx16dKlyvNZvq6mNm3atOEqUQMlJSUpKytLt956q3x9feXr66tt27bp9ddfl6+vrwIDAzl3Lu76669XaGio1bK+ffvqzJkzkn48BzX9vezSpYuysrKs1peWlurSpUv1Os+ov2eeeUYzZszQww8/rJtuukm/+c1v9NRTT2nOnDmSOH+wPXIo10P+5J7Iodwb+ZP7a0o5FEUpF+Tn56eBAwcqISHBssxsNishIUFDhw51YmRNk2EYmjJlilatWqXNmzdXGt44cOBANWvWzOp8HTlyRGfOnLGcr6FDh+qbb76x+qOwadMmtWnTxvKFMXToUKs+yttwzhtu1KhR+uabb5ScnGx5DRo0SBMmTLD8zLlzbbfffnulR4gfPXpU3bp1kyT16NFDXbp0sfr8TSaTdu/ebXUOL1++rKSkJEubzZs3y2w2a8iQIZY227dvV0lJiaXNpk2b1Lt3b4aeN0JBQYG8va1TDR8fH5nNZkmcP9geOZTrIH9yb+RQ7o38yf01qRzKYVOqo15WrFhh+Pv7G0uWLDFSU1ONyZMnG23btrV6egUc4w9/+IMREBBgbN261Th//rzlVVBQYGnz5JNPGiEhIcbmzZuNvXv3GkOHDjWGDh1qWV/+SNx77rnHSE5ONjZs2GB06tSpykfiPvPMM8ahQ4eMuLg4HolrBxWfHGMYnDtXl5iYaPj6+hovv/yycezYMeODDz4wWrZsabz//vuWNnPnzjXatm1rfPrpp8bBgweNX/7yl1U+DveWW24xdu/ebezYscPo1auX1eNwL1++bAQGBhq/+c1vjJSUFGPFihVGy5YteaRxI0VHRxvBwcGWxxmvXLnS6NixozF9+nRLG84fbI0cyjWQP3kecij3Qf7k/ppSDkVRyoW98cYbRkhIiOHn52eEh4cbu3btcnZITZKkKl/vvvuupc2VK1eM//mf/zHatWtntGzZ0hg3bpxx/vx5q35Onz5tREVFGS1atDA6duxoPP3000ZJSYlVmy1bthgDBgww/Pz8jJ49e1rtA7ZxbULFuXN9//3vf43+/fsb/v7+Rp8+fYw333zTar3ZbDaef/55IzAw0PD39zdGjRplHDlyxKrNxYsXjUceecRo1aqV0aZNG2PixIlGbm6uVZsDBw4Yd9xxh+Hv728EBwcbc+fOtfuxeTqTyWRMnTrVCAkJMZo3b2707NnT+Mtf/mL12GHOH+yBHMr5yJ88DzmUeyF/cm9NKYfyMgzDcMyYLAAAAAAAAOAq5pQCAAAAAACAw1GUAgAAAAAAgMNRlAIAAAAAAIDDUZQCAAAAAACAw1GUAgAAAAAAgMNRlAIAAAAAAIDDUZQCAAAAAACAw1GUAgAAAAAAgMNRlAIAAAAAAIDDUZQCAAAAAACAw1GUAgAAAAAAgMNRlAIAAAAAAIDDUZQCAAAAAACAw1GUAgAAAAAAgMNRlAIAAAAAAIDDUZQCAAAAAACAw1GUAgAAAAAAgMNRlAIAAAAAAIDDUZQC4FGWLFkiLy8veXl5aceOHZXWG4ahrl27ysvLS7/4xS8sy8u3qer15JNPVurnyy+/1IMPPqjg4GD5+fkpICBAQ4YM0d/+9jdlZmbWKdaNGzfqd7/7nfr37y8fHx917969wccNAABQH+6UM9WGnApwX77ODgAA7KF58+Zavny57rjjDqvl27Zt09mzZ+Xv719pm7vvvluPPfZYpeU//elPrd7PnDlTL774onr27KnHH39cPXv2VGFhoZKSkvTqq69q6dKlOnHiRK0xLl++XPHx8br11lsVFBRUzyMEAABoPHfImWpDTgW4L4pSADzSvffeq48//livv/66fH1//FO3fPlyDRw4UNnZ2ZW2+elPf6pHH320xn7j4+P14osv6sEHH9SyZcvk5+dntf61117Ta6+9VqcYZ8+erbfeekvNmjXTL37xC6WkpNRpOwAAAFtx5Zzp9OnT6tGjh7Zs2aK77rqr2nbkVID74vY9AB7pkUce0cWLF7Vp0ybLsuLiYn3yyScaP358g/udOXOmOnbsqHfeeadSciVJAQEBeuGFF+rUV1BQkJo1a9bgWAAAABrLHXKm2pBTAe6LohQAj9S9e3cNHTpUH374oWXZ+vXrlZOTo4cffrjKbQoLC5WdnV3pVVxcLEk6evSojh49qrFjx6pVq1YOOQ4AAAB7ImcC4EwUpQB4rPHjx2v16tW6cuWKJOmDDz7Q8OHDq51r4J133lGnTp0qvVauXClJOnz4sCSpf//+VtsZhlEpKSstLbXjkQEAANgOORMAZ2FOKQAe68EHH9S0adO0Zs0a/fznP9eaNWv0+uuvV9v+l7/8paZMmVJp+U033SRJMplMklTpil9OTo46depktWzPnj0aNGhQYw8BAADA7lwlZ8rLy1NhYaFl3ffff2/ZruLcVs2aNVNAQEB9DhGAi6IoBcBjderUSREREVq+fLkKCgpUVlam+++/v9r2N9xwgyIiIqpd37p1a0lXE6aKWrVqZZmHYePGjXrllVcs63JycixXHSXJz89P7du3b9DxAAAA2IMr5EySNGXKFC1durRSf2PHjrV6P3z4cG3durWmQwLgJihKAfBo48eP16RJk5SRkaGoqCi1bdu2wX316dNHkio90cXX19eSmJ09e9Zq3dSpU62SK5IoAADgipydM0nS9OnTrZ7ql5mZqUcffVT//Oc/FRYWZlnerl27BscGwLVQlALg0caNG6cnnnhCu3btUnx8fKP66t27t3r16qXVq1dr/vz5uu6662rd5trkiiQKAAC4ImfnTJIUGhqq0NBQy/vTp09LkgYOHKi77rqrUTEBcE0UpQB4tFatWmnhwoU6ffq0Ro8e3ej+XnjhBU2YMEGTJk3S0qVLKz1+2DAMq/fXJlcAAACuyNk5E4CmiaIUAI8XHR1dp3ZHjx7V+++/X2l5YGCg7r77bklXh7anpKRozpw5SkxM1MMPP6wePXooPz9fKSkp+vDDD9W6des6jYg6ePCgPvvsM0nS8ePHlZOTo5deekmSFBYWZpOEEAAAoK5cNWeqDTkV4L4oSgHADzZt2mSZfLOi4cOHWxIsSZo9e7YiIyO1YMECLV68WNnZ2WrRooV++tOf6umnn9aTTz6pLl261Lq/ffv26fnnn7daVv4+OjqaBAoAALgkR+dMtSGnAtyXl8G4SQAAAAAAADiYt7MDAAAAAAAAQNNDUQoAAAAAAAAOR1EKAAAAAAAADkdRCgAAAAAAAA5HUQoAAAAAAAAOR1EKAAAAAAAADufr7AA8gdls1rlz59S6dWt5eXk5OxwAAGBDhmEoNzdXQUFB8vbmep6tkD8BAOC56po/UZSygXPnzqlr167ODgMAANhRWlqabrjhBmeH4THInwAA8Hy15U8UpWygdevWkq5+2G3atHFyNAAAwJZMJpO6du1q+b6HbZA/AQDgueqaP1GUsoHyIedt2rQhqQIAwENxi5ltkT8BAOD5asufmBgBAFzcvjPfKzuvyNlh1NnlgmLtOX1JhmE4OxQAAADU0Tdnc/TB7u+cHQaaGEZKAYAL233yoh56c5d8vb10fPa9zg6nTu5+bbsu5BbpXxNu1b03Xe/scAAAAFAHoxfskCS19PPRuFuYQxGOwUgpAHBhO45nS5JKze4z6uhC7tVRXZ9/m+HkSAAAAFBfb24/5ewQ0IRQlAIAF+bNHDYAAACoo50nLupoZm6j+igzm20UDVA7bt8DABfm601RCgAAALU7nZ2vR97adfXnufc1uJ/SMvcZoQ/3x0ipRoiLi1NoaKgGDx7s7FAAeChvNy5KuW/kAOpj3Lhxateune6//35nhwIATdrJ7Dyb9GPmYTVwIIpSjRATE6PU1FTt2bPH2aEA8FA+blyUAtA0TJ06Ve+9956zwwAA2IgbTWVqE2cuFqi4lFsWnYWiFAC4MGpSAFzdXXfdpdatWzs7DACAjTSlkVJfH8/Wna9s0QOLvnZ2KE0WRSkAcGHtWvpZfi4t4woOANvavn27Ro8eraCgIHl5eWn16tWV2sTFxal79+5q3ry5hgwZosTERMcHCgBwmCZUk1L83jRJ0oGzOU6OpOmiKAUALsy/mY/l5yKGFQOwsfz8fIWFhSkuLq7K9fHx8YqNjdWsWbO0b98+hYWFKTIyUllZWQ6OFABQGy8bzehpNKGqVBM6VJdFUQoAXFjF2/fK3Oxb08uLew8BVxcVFaWXXnpJ48aNq3L9vHnzNGnSJE2cOFGhoaFatGiRWrZsqcWLF9d7X0VFRTKZTFYvAMBVZWZDz35yUB/9MHKnIWx1AdO9Mk64O4pSAODCKl7xMtxsoFRTusoGeKLi4mIlJSUpIiLCsszb21sRERHauXNnvfubM2eOAgICLK+uXbvaMlwAcGtrvzmv+L1pmv7JwQb3sTzxjE1iaUpzSnEN1fkoSgGAC3PnkVLOknapQNNW7FfqOUZhAI2RnZ2tsrIyBQYGWi0PDAxURkaG5X1ERIQeeOABrVu3TjfccEO1BavnnntOOTk5lldaWsNHAwCAp7mUV9ToPrJzG99HU0N67Xy+zg4AAFA3ZW72fN7dpy45Zb9Pvp+kb8+Z9N+D53Vi9r1OiQFoSr744os6tfP395e/v7+dowEA9+RmaR5gM4yUAgAXdjgj1/KzLW+H+zDxjOL32GaId3UuF5TYtf/qHMvKk+R+RTzA1XTs2FE+Pj7KzMy0Wp6ZmakuXbo4KSoAqJvjWXmK+r8vtSHlvLNDqRNb3DKXep5R4nA/FKUAwIX9X8Ixy8+2un0v50qJnlv5jZ79zzfKLyq1SZ9Vcdbthr7eTA4A2IKfn58GDhyohIQEyzKz2ayEhAQNHTq0wf3GxcUpNDRUgwcPtkWYAFClpz9K1qHzJj35/j5nh1InrnQbmSvFAs/H7XsA4CZsNfKnqLTM8nNBcZmu87fPV0FxI58Ac/DsZfn7+qh3l9b12o6SFFB3eXl5On78uOX9qVOnlJycrPbt2yskJESxsbGKjo7WoEGDFB4ervnz5ys/P18TJ05s8D5jYmIUExMjk8mkgIAAWxwGAFRiKrTfhTd7MHjmnVPwqTsfRSkAcBO2umpV8Yl+CzYf019/2d82HdvQ5YJijVnwlSTp9Nz7nBwN4Ln27t2rESNGWN7HxsZKkqKjo7VkyRI99NBDunDhgmbOnKmMjAwNGDBAGzZsqDT5OQAAQENQlAIAN2GPOZJW7kt3yaJUVoWnxxiGIS+e1wvYxV133VXrfHVTpkzRlClTHBQRANiGLefidIQDZ3Ns2l9+UandRsMDtsScUj8YN26c2rVrp/vvv9/ZoQBAlWw1R1PF+o6z5n2qTcUSVH1DpIAFuDbmlALgCK6Z4VRv7UHbTsj+yudHbNofYC8UpX4wdepUvffee84OAwCqZasrfhVLNq76hLqKdaX6RkhJCnBtMTExSk1N1Z49e5wdCgB4rG/SGz7yyjWzQ3gqilI/uOuuu9S6df0m0wXQtJSZDe09fUmFJWW1N7bL/m3TT8WRRK5alKpYWqr3I5KpSgEA0OS56GBwANfwiKLU9u3bNXr0aAUFBcnLy0urV6+u1CYuLk7du3dX8+bNNWTIECUmJjo+UABu7c3tJ3X/op2a9N5ep+zfVgWkijWbUpctSv2ovkmlN7fvAQDQ5PE0O9SFu8095ok8oiiVn5+vsLAwxcXFVbk+Pj5esbGxmjVrlvbt26ewsDBFRkYqKyvLwZECcGfv7/pOkvTlsWyn7L/eI4bcmPXte/U7bm9qUgAANHlpl67YvM8sU6Ge/uiAktMu27xvW0s9Z3J2CJKk41m5iv0oWaey8+vUfkNKhrrPWKsvUjPtHBlchUcUpaKiovTSSy9p3LhxVa6fN2+eJk2apIkTJyo0NFSLFi1Sy5YttXjxYgdHCsCdpV+2fXJTH+5QlDLbYeSVu46U2nw4Uycu5Dk7DMDlMNE5AHf1zCcH9Z99ZzU27iu77ienoKTRfVxpxHQTtkw571+0Uyv3pes37+yuU/sn30+SJP3eSXcmwPE8oihVk+LiYiUlJSkiIsKyzNvbWxEREdq5c2eD+iwqKpLJZLJ6AYC9ue78Tz/6JOmszfus/9P3bB5Cve09fUm/XbJXo17d5uxQAJfDROcA3JWjLjYVlTln/lJ7uPxDge3s9869uAvX5fFFqezsbJWVlSkwMNBqeWBgoDIyMizvIyIi9MADD2jdunW64YYbaixYzZkzRwEBAZZX165d7RY/AJRzg5qUth+7YPk5rGvbBvdTsa5U39v3vFygKnXwbMOfeAMAAJo4N8j5AFvxdXYAruKLL76oc9vnnntOsbGxlvcmk4nCFAC7s9Xte1X1cuZiga5v21zNfKq+VpFbWKL8ojJ1CWhe5/209m/4V8yl/GLLz+748D1ySQAAPI8LXPcCPI7Hj5Tq2LGjfHx8lJlpPVFaZmamunTp0qA+/f391aZNG6sXANibrW7f+7LCaCZJ2nIkS3e+skXj39pV7TYD/rZJP5uToCxToU1iqEleUanuX/TjaNXzOfXbpyvMKVVSZq7yZwAA4DkMw1BxaeO+50vLzG4xRQNgLx5flPLz89PAgQOVkJBgWWY2m5WQkKChQ4c2qm8m6gTgSLYaKbUiMc3q/Qe7zkiS9pz+vtptypOl/bU8baZihA2tDZ2+5ukse09fqtf2rvD0ve8LfhzplV9U6sRIAABoeuzx4JWqTFm+X31nbmjwRbvSMrOG/WOL7n7Neg7KPCfnDq6QS6Hp8IiiVF5enpKTk5WcnCxJOnXqlJKTk3XmzNX/0YqNjdVbb72lpUuX6tChQ/rDH/6g/Px8TZw4sVH7ZaJOAI5kttGAm8pzNNkwcbNDDljfLl1hTimvCjcRusFDEwGH4qIeAHureHHIntZ+c15lZkMfN/BBL+mXr+h8TqFOXrC+ILfjeLYtwmuwXw4Icur+0bR4xJxSe/fu1YgRIyzvy+d7io6O1pIlS/TQQw/pwoULmjlzpjIyMjRgwABt2LCh0uTnAODKLl+xTYJ1bZHk3OXG35KXV1Sq/rM+t1rW0OJQbqH11cH6FnW8XeByi6mw9kc57ziWrW1Hs/RMZB/5+bpA0ICDxMTEKCYmRiaTSQEBAc4OBwBcjjMusBkVEq7mzXwcvn9n4dqh83lEUequu+6y+kdUlSlTpmjKlCk23W9cXJzi4uJU5kGP7ARQtYoTbzvL7LWH9IubbX/lKvW8qdF93D1vW6VlDU2n/r7hsNX7ej99zwWmOl+++4zl5+qif/Sd3ZKkLgEt9Ls7ejggKgAA4A6cn8kAjsOl2Ubg9j2g6bhS4vzi87l6TvhdncZcEaqu/l/VZOQNvch3LDO3TvusjgvcvVcvaZcKnB0CAAAexdEjjWy9O2c8tIXpBuAsFKUAoA5qG42JyhqaTjX2k3a1mhS/OwAAeIbqRmPb+qveGRfYyFbgLBSlAKAWv3lnt371r6+dHYbN2LpIcqW46lFktrpK6e5JkqPi33b0gv619ThFMAAAHKDi9+331UzzsO/M95rxn4MqKq3fiPuiGkbobzmSVelJxXWVfvmKNqVmWsV+8Oxl7TvzvdWyC7lFDeq/PrJyC7Uh5bzlCc+SVFJmo6f61FFhSZnWHjzv0H2iMopSjcDTYwDPl2kq1JfHspXlgC9nR9l35nK92td2e9nrm49VudxmF/nqWWRxhafvVeSoGlH04kT9Y8MRbTmS5ZgdAgDgouyVCVRMMSp+376941SV7X/1r6+1Yk+aHl9cv+le5m06WuXy3ScvauK7e3TXP7fWq79yt8/drEnv7dX6lAxJUnGpWWMWfKVf/etrvfnlSUu7FXvSGtR/fdw9b7uefH+f3tt52rLsrQoxOEL4y184dH+oGkWpRmBOKcDzXfskOE9Q8YpUXeRcqflJcodtMFF6Tepb03GtklT9J2pvrHQbPE0RsCcu6gHwBHtOf1/ntjtPXqxX36Zq8s8DZy/Xq5/q7P4hnuIKI5OWfHXaJn3XVXl+ufnwj8W9z7/NdGgM1X3OcCyKUgBQAxcbdOMU1p9B3QsstvrszPUsojV53L4HF8dFPQDuytlpoa0mQK8qUyDdgrNQlAKAGjg7+XAFzq5x1Hv3rnbSSPIAAHAoT72oWNMUBY2dU9JZc1I6O8+E81GUAoAa7Dl9yWn7dpUJqysOqz59sfL8UtVFWVP4qedMGvnPrVr3zdXJJYtKyzQ27iu9tCZVBddMnG7Lj+Hpjw7o0bd3M/oKAADUm7PnrbTn3smM4CwUpRqBOREAz/fsf75x2r4vVvMkF0erONnm3PWHbdJnzPJ9Opmdr//5YJ+kq3MIJKddrnKi0L7Xt6lX3zUlbP/Zd1Y7jmcr1c7zYFVEkgcAgOdxRnnKnjUxp42UIlNq8ihKNQJzIgCwJ3cfzVNT9AXF1hNLlpmrfwSwf7P6fVXV5SqmI/MuFxnwBgBAk+Flp5KRs+8KtNWcUlVx87QTboyiFAC4KHfPDWx1xc0eRR1PnWtCcv/fGwAAbK20rPqLX/VxucITiZ1RxMkrqvy0uDKzoUPnTfWKp6TMLFNhib67mG9ZVtvTlg+evazUcyZLHCcv5FXZ7nR2vnILq+6rpMyswxkmqxyx/Me8olKlnsupNfYys6E56w4p6buqn36YnVek8zlXau0HrsPX2QEAAKrmLiNs7B9n/XbgwfUmAADQAH/6+IDmP3xLo/u5VGFqhUXbTjS6v/p65fMjlp/zi0p1nb+vXvjsWy3b9Z0e/VlInfv5MDFNK/elq6i0bsW6TFOhxiz4SpJ0YOY9GvHqVl3KL9aa/71D/YMDLO2OZ+UqYt52tfTzUerffl7pAuX/Lt+vDd9maOYvQivt4/a5m1VSVnvO95M/r5Mk/Xv7Se14doRuaNfSss4wDA166QtJ0rd/jdR1/pQ73AEjpQDARbn7PfZHM6u+giZJF3KL6txPXROmchVHQW1IOa/iKrav70gps9nQxm8zlGUqrLVtSnrtV/ls7VR2fpXLv88vrvYzAJyFOTkB2N013/Ork885Jw47Kh8NtGzXd5Kk93edqdf29cmvDp79Mbc5dTHfUpxLOJRl1W770WxJsjy0puya4Vsbvs2QJL315UnLsvK6VW0jtapy7WipirvLqEPO1r1Dy1rbwP4oSgGAi3KXkVKmaoZop1+ufuh0fYaY/7PCVcH6evL9fZaJ2htzO+HHSWmavCxJI/65tcZ2ZWZDv3hjR4P301DVxfXAv3fqyff3acHmY44NCKgBc3ICgC243thwd5seoXPr5s4OAaIo1Shc6QNgT2Y3qUpdzLPvUwL3nblcr/bXTm76WXK6JOsiX30nQN18+OqVwPwfrvxVp7SGCdsdpeJxHs+6OlptzcHzTooGAADYg7cDC0B1vbBX15AqtnPqnQFuVkTzVBSlGoErfQDgPsWzilHa60qevZ7202guGhYAAGiYujxt2FYq5lA1FagcGZMtuFe0nouiFAC4KDep9bhcnNfmQ+XhVUyi6pszudoxAgAAOIo98yBn5lhuVkPzWBSlAMBFuUshxF1GSlXkyBFN7j5hPQAAcD2OvH2vrk9CpsiDhqAoBQAuyl2KGe5Sk3LE7XuuoDETugMA4Ak8+Xu+nEMvsFVILWrKMuo8p1SFE2TLrKW+OZDLTrvQxFCUAoAGKC2z/4TW1z5G15EKiks1Z90h7TvzfY3tjmbm1umRu7ZUU2yT3turwxm5VW5XnzzlswPn1H3GWqWeM6m41KyNqZmWdTWdl6oKia5QIyLlAgAAsNYUipfugKJUI/D0PaDpWrrzO7vvo2IhxNH+L+GY/r39pH71r69rbHfPa9sdFNGPqoutzGxoUxWfWXlRqGLBqLYc5I8f7pck3fv6l3pv52mrdSv3na13zI5UUFLzEwIBAPB01Bpsq87X1xpS5XGBi3dwLl9nB+DOYmJiFBMTI5PJpICAAGeHA8CBTl7Is/s+zl2+Yvd9VOd4pv2Pr6Gqi622ua0qrq5PznT6Yr7V+7PfV39eqgrB0blWaVnlPbrb03AAAJ7jcIZJP5//pSRp01N3qldga7vv02yHAe3ZeUX1al9YzUWieZuO6uSFPO05fUmZpur7/Nt/U/X8L/rqze0ndSm/WK38rf/X/c5Xtih6aLd6xdQQB89e1v98sM/yvuJFwR3HL+i1L45qWkQvHcvM07GsH0erd5+xVq89FFZr/4YMvfDZt42Oc8vhLH2S9OOFw7qMVP/mbE6Vy0vLzLrxL+vVp0trbZh2Z6NjQ80oSgEA7MYwDJsXRKrrrn578dwijSvcLgjUJC4uTnFxcSorY1Qf0BTcv3Cn5ee7X9uu03Pvs/s+135z3uZ9Pvzmrnq1n/lpitX7S/nFkqTXE47VafvFX53S2FuCNGf94WrbOGLk/pgFX1W7bs/pq1MpzP+i6mN6Kv5Arf3vOf29pZ/GmLhkT723yS0qrXL5a18claRqp4SAbXH7HgA0gCP+v98TyiauUCCpap6nxtTJ6ntIrjDxuCf8LsFzxMTEKDU1VXv21P9/IAC4n7xq/sffnnKulNi8z+NZ9RtFfuZSgdX7kjKzSuo5J2l+EcX7hmpMrpdew6h42B5FKQCA3TiyHFPbiCyb1YZq6KjK2/ecX5MCAABwGa4+qwCpm2NRlAIA2I0rjBIqV5+Jzt2ZrUeGAQAAuBsXSkFRC4pSANAAfNHVjSt8TFWdq8bMc1XTMVVVEAIAAI7FxRg0Br8+jkVRCgBclCc8Mc0+xbuGfS5WT99rxN4pSAIAALg2R84fisbh6XsAXNbLa1P11pen1KKZjw69+HNnh3ONyl9Xz608qHOXC/Xu44Pl7W2fglL3GWslSYFt/LX7zxHVtntnxyn9J+msPvj9ELW7zs+y/Kvj2TX2X2Y25FNL7PF7zuihwSGK23K81ngffWe3Alo005u/GVhjka22p7PMWX9IT0X8VOPf2qV9Zy5blkfM26Zf33qD/r6h+ifTZOUWKfK17Sos/XGy0Lv+uVWfTbldq/ef0+KvTkmSenVupVceCFPYDQFW27+/64zV+y1HsrRgy3GFXt9GBcWlOn2xQIseHSjJ0ItrDlXa/7VFrLRLBZr03t5q4/0w8YyeW/mNJOn03PuUW1iiCW/vVmS/LooZcaNV23OXr+i31zxtpnx/V4qZHBUAADRNXER0H4yUaoS4uDiFhoZq8ODBzg4F8EhvfXm1WHClxPX+57qqL7oPE9O07egFfZOeY5N9/Kxnh2rXZZqKatz2xTWpSj1vqlQ4mvD27hq3O3TeVGtcz/7nasHklc+P1No28dQlbUrNrPQEmvr697aT+uzAOauClHT1STg1FaTKHcnM1XcXrWMYs+ArS0FKko5l5ek37+zWhdyaP9tvz139jFLPm3T6hz6ffD9JT76/T+mXa39aywuffWv1iOGMnEKr9eUFqXLLdn2ng2dzqvy8X153qNrHFX+SlGb52YuB6AAAAHVC1uRYFKUagUcaA6hKmY0uzbRp0fjBrEWl9Xv0sNlOl5XMNui2vo9Rboj8olKbxFrRtfNMFVwzgqm235fiGs5hYRWjocoHpBWXcYkQAAA0TR4wC0aTQVEKABrAU4cE2+u4XOkpfM5W3ySpvqOcqp7YvX77BADAnZF2AO6DohQANIC9RhTB+WxdwLn2V+Xa/mv7VapvPPxmAgAAqWlfFGzMoTfdT805KEoBQAN46peVvY7LUz+vhqjvyCcGOQEAgIaw9ZQEgD1QlAKABmjCF548nq2LQNf+qlQe+VTzL1O9R27xywkAAOS6I6UcEVZjRr5zQdCxKEoBQAO46pe8J3PER+6Is+p1TZZU21XMa9vXpqru6tsHAABwf646UsoRaQm377mPxj/aCQCaIE+dU8pexTYP/bjq5NrP1N55WFP+rAEAruObszkavWCHQ/Z1LDNXT7yfpKmjeumXA4L19w2HK7XpPmOtJOnlcf01YUi3avv686pvdPJCnt6JHqx+sz6XJD0S3rXWGO55bZve//0Q+Xp764FFX+vEhXyr9XfP26bHb+9Rn8PSI2/tqlf7a/30/61v8Lbln5c9nP3+Sp1jWD91mPpe30aS9PzqFKv1U1cka+qK5Cq3jZi37cd+OrTU6YsF1uv7Blba5oXPvtWSr09bLbtSXKYWfj61xvrHD/frswPn9MSdPfXcvX1rbf/eztNatvM7LfvdEHUJaF5re0/GSCkAaAD+v9+D2blqVHmi85p/m7zrPVKK3064tri4OIWGhmrw4MHODgWAHU1ettdh+4r96IBOXsivtkBR0V9WpdS4fvnuM9p18pJVAeTDxLRa+z2amafXNh3Vv7Ycr1SQkiRTYaleTzhWaz+wNmX5PsvPy3Z916A+ri1ISdIXhzIrLbu2ICVJ//i8coGzKp8dOCdJ+vf2k3VqP/PTb3UsK09z1x+qU3tPRlEKABrAIcOhnVBbsN8um26h5Nojv7bIVNsnU++n7zXdjxpuIiYmRqmpqdqzZ4+zQwFgRwXFZQ7cV6nN+ywsrX/8RSVmFZeZbR5LU3bFgb9HVSkqte/5tHf/7oCiFAA0gKfevufKHDH/gJfq/3S82lz7q3Jt77X9KtV7nnMb9AEAAOAKyLg9H3NKAXCIY5m5+s++dD05vKfatvSrtl12XpEGvfSFnor4qdXyTFOhAts49n7rohqukGXmFGr+F0c1uHt73X5jR6t1Mz9N0Zr/Hdbo/a/YU/NQ8X1nvtetIe0s79/cfkLdOlynyH5dLMuW7fpO8XvS9OuBwQoNCqh1n5k5hdr4bYYSDmfV2K6+8wysPZihhdt2qGfHVrqYX9Sgvmobbm8LZkMa/PIXNu2z4pwGVdl29ILlM/jjqF5W626a9blyi368+vvW9pN6Y/MxmQqrvyK8cOsJDbvmd9JZLuUX683tJ3X/wBt0Y+dWzg4HAACgXrgObX+MlGoE5kQA6u7u17Zr0bYT+n+ray4sDHrpakHgtS+OWi0fMjvBbrFV550dp6pdt/e77zX/i2Oa8PZuSdLBs5ct61LSTTbZf/m96dX51b++tvyc9N33mr3usJ5YllSpXXGZWR8mplWaHLIqf/hgnyZX0UdjvfbFURWWmJV63qRMU1HtGzRR1841UbEgJUkvrztUY0Gq3Pgffi/LpZ63ze9kfT37n4NatO2Efj5/u1P2DwAA3BtFIc9HUaoRmBMBqL9v0nOcHUKdnciqPElldbLznFtouZBb6NT9A1U5kHZZklTqqs+kBgAAqBE5jL1RlAIAAAAAAC7H2U8VZqSW/VGUAgAAAAAALoeikOejKAUAAAAAAFyOs2tSFMXsj6IUAAAAAAAAHI6iFAAAAAAAwDWcPadVU0BRCgAAAAAAuBxn3z7n7P03BRSlAAAAAAAA4HAUpQAAAAAAgAty7lAlBkrZH0UpAAAAAADgcrh9zvNRlAIAAAAAuC171C0ohrgGZ58Gfg/sj6IUAAAAAADANXj6nv1RlAIAG+AqCgAAAGBbBkm2x6MoBQAAAAAAcC1qYnZHUeoHa9asUe/evdWrVy+9/fbbzg4HAADA5ZE/AQCAxvB1dgCuoLS0VLGxsdqyZYsCAgI0cOBAjRs3Th06dHB2aAAAAC6J/AkAYG/OHqjk7P03BYyUkpSYmKh+/fopODhYrVq1UlRUlDZu3OjssAAAAFwW+RMAwN6YUsrzeURRavv27Ro9erSCgoLk5eWl1atXV2oTFxen7t27q3nz5hoyZIgSExMt686dO6fg4GDL++DgYKWnpzsidAAAAKcgfwIAuDpnT3Tu7P03BR5RlMrPz1dYWJji4uKqXB8fH6/Y2FjNmjVL+/btU1hYmCIjI5WVleXgSAEAAFwD+RMAADWjJGV/HjGnVFRUlKKioqpdP2/ePE2aNEkTJ06UJC1atEhr167V4sWLNWPGDAUFBVld2UtPT1d4eHi1/RUVFamoqMjy3mQy2eAoAM+VU1Bi+fm7iwXqPmNtg/q5drvwHu118OxlFZaYrZb/vF8XfXepQIfO//hvM6p/F61PydCYsCA9MOgGDevVSd/nF+vxJXsUen1r9eh4nRZtO6mPnhiqiHnb6hXXC599qyVfn64U67BeHeXl5aXRN1+vg2dzVFJm1oo9afU76FpU9Vk29POFZ3lxTarV++4z1ur+gTeoqNSsFs28dfuNHTV1RbJ+1rO9hvTooNCgNnpiWZIkqf11fmrT3FcfTPqZgtu20MW8Ir371Wk9MOgGdetwnSRp7cHzenP7Cfk389G9/bsoO69Yd/XupOn/Oahf3RKsKSN7Vdr/R08MVXiP9jqdna9Pks7qt3f0UPvr/Cxtnlt5UCnpJn0waYjaNG9W6zGeuVigj/am6fHbu6tjK//GfmRNDvkT3NG7X51S13YtFREaqLyiUr257YTuvfl69enSpsbtsnIL9d7X3+mhwV3VtX1Lnf2+QCsS0/TYbd3UuXVzq7Zbj2TpWGaefj+sh7y8vHSluEyLtp3Q3aGB6h8coIycQv164dcaPyREMSNurHaf313M19Kvv1NxWZnGh3dTaNCPMf5r63F9sOuMPn5yqILatrAsX7nvrAxD+vXAG/TZgXO6UlyqhwaH6HCGSX94f59OZefrv1Pu0OffZuhKSZlyrpTockGJzudc0bfnqv439e7jg3U0M1eT7+ypfWe+16fJ57T24HldzC+WJL32UJhuv7GjRr+xQ5mmIsWM+ImeiewjSTqWmavPDpzTpDt7qrmvjxZuPaFhP+2oW0Pa6ZXPD+vjvWf13/+9Q+/v+k5jwoLk5SV9mnxOj/6sm3KuqYPHogAASoFJREFUlFQZzzs7TmnRthMa1qujJgwJ0a0h7fTS2kN6Z8cpvTA6VI/f3sOq/dHMXL24JlXNfLy19UiWFoy/VTe0a6H7F+3UX+7tq4/2punkhXxL+wf/vbPac1Ju0nt7dedPO8nbS/rLqhTL8u4dWlp+Xp+SUWs/11q5n9GitmYqLHVqbvtp8jkdy8xT6nnrf1//+PXNuphfrL9vOFxpm1/96ysN69VJIe1bKn5PmhJPX7Ks+yJ2uC798G9PkvafuVzlfgtLyvTnld9o5f50/fs3AxXZr4ttDqiCJV+d0g0//D11Ji/Dw8ajeXl5adWqVRo7dqwkqbi4WC1bttQnn3xiWSZJ0dHRunz5sj799FOVlpaqb9++2rp1q2Wizq+//rraiTpfeOEF/fWvf620PCcnR23a1PyFCDRF//vhfv33wDlnh2Hl9Nz79If3kxqUcABNRbcOLbXtmRGKXpyobUcvqP11ftr3/N2Sai9+fjl9hH698Gtl5RZZLT899z6F/XWjcq6UaGSfzlr8+GBJ0p7Tl/TAoqv/I3H/wBv0zwfCao1v4IubdDG/WMN6ddSy3w1pyCHWiclkUkBAgEd/z5M/wR18czZHoxfskHT1b8nzq1O0bNd3lvc1eXDRTiWevqTgti301YyRuuPvm3X2+ysa1K2dPvnDbVZty/++LZ80RLf9pKNe+fyw4racsOxn5KtbLUWQA7PuUUCLqovot764yep/PstjzC8qVb9Zn0uSggKa6+vnRkmSCopLFTrzc0u/YX+9Okdb4p9HKXx2Ql0+ohq9O3GwJr67p8p1g7q1097vvq8Ua/ln8dCgruoV2EovrT1kWW+rQsF7vw3XY4t/vDX42nPJxTZ4uqr+fr2ecEzzNh2tsU1jpKTn6Bdv/Pj31B7qmj95xO17NcnOzlZZWZkCA62rf4GBgcrIuPo/o76+vnr11Vc1YsQIDRgwQE8//XSNT4557rnnlJOTY3mlpdl25APgafZVSHJcSZKLxgW4iu8uFki6WjCSZPU/V7Wp7gp5xXV7Klw5PJ9TaPk5Oe1ynfZRfpV/96lLtbREfZE/wRVl5RZavf8mPafO25aPVEi/fEWSdPb7q//dW0MucP7y1f0dOp9rtbziqJzCkrJqt6/ub2ZR6Y8jvM9V+NtXXGF5xX5NhaXV7qM+0n845qrU9DlI0oGzl3UsM88mcVzr3OXq4wKaqiMZubU3aoQL11w0dCaPuH3PFsaMGaMxY8bUqa2/v7/8/blNAADs6f6BN+iTpLPODgNADcifAABAY3j8SKmOHTvKx8dHmZmZVsszMzPVpYvt78sEAABwd+RPAADAETx+pJSfn58GDhyohIQEy5wIZrNZCQkJmjJlSqP6jouLU1xcnEpLrw6pZcJOoGqlhfkyFxXW3tCBTCaTygrzZS6q++1IcKyigjyZiwqcHUaTZzKZVFaUL3Ox2fJeUq3nJi+36n9jJpPJsm2Zl4+lv4K8XMvy0kKvOn2nWvop87brd3B53x42DWeNyJ/givIr/J0wmUwquZJv9b4mFf9mVfw7VNW25esK8nJlMplUfCXPaj8Vt801mdRCVecS1/6dLN+PKb+4yv2bCn5cnlthP7m5Jpt8H17Jz61zP9f+rS8t9FZRgW+1n0NjVPz7X3Hf5cgF4Omq+vtVfE0ebOvvymv/ntpDnfMnwwPk5uYa+/fvN/bv329IMubNm2fs37/f+O677wzDMIwVK1YY/v7+xpIlS4zU1FRj8uTJRtu2bY2MjAyb7D8tLc3Q1adF8uLFixcvXrw89JWWlmaTvMFVkD/x4sWLFy9evOz9qi1/8oin723dulUjRoyotDw6OlpLliyRJC1YsECvvPKKMjIyNGDAAL3++usaMsQ2T+oxm806d+6cWrduLS8vL5v0Wc5kMqlr165KS0vjyTRuiPPn3jh/7o9z6N5c5fwZhqHc3FwFBQXJ29tzZj4gf4Ir4xy6N86fe+P8uTdXOX91zZ88oijlyZrCY6g9GefPvXH+3B/n0L1x/tBQ/O64P86he+P8uTfOn3tzt/PnOZf7AAAAAAAA4DYoSgEAAAAAAMDhKEq5OH9/f82aNUv+/v7ODgUNwPlzb5w/98c5dG+cPzQUvzvuj3Po3jh/7o3z597c7fwxpxQAAAAAAAAcjpFSAAAAAAAAcDiKUgAAAAAAAHA4ilIAAAAAAABwOIpSAAAAAAAAcDiKUi4sLi5O3bt3V/PmzTVkyBAlJiY6O6Qmac6cORo8eLBat26tzp07a+zYsTpy5IhVm8LCQsXExKhDhw5q1aqVfv3rXyszM9OqzZkzZ3TfffepZcuW6ty5s5555hmVlpZatdm6datuvfVW+fv768Ybb9SSJUvsfXhNyty5c+Xl5aVp06ZZlnHuXF96eroeffRRdejQQS1atNBNN92kvXv3WtYbhqGZM2fq+uuvV4sWLRQREaFjx45Z9XHp0iVNmDBBbdq0Udu2bfW73/1OeXl5Vm0OHjyoYcOGqXnz5uratav+8Y9/OOT4PFlZWZmef/559ejRQy1atNBPfvITvfjii6r4jBXOH+yBHMr5yJ88CzmU+yF/cm9NKocy4JJWrFhh+Pn5GYsXLza+/fZbY9KkSUbbtm2NzMxMZ4fW5ERGRhrvvvuukZKSYiQnJxv33nuvERISYuTl5VnaPPnkk0bXrl2NhIQEY+/evcbPfvYz47bbbrOsLy0tNfr3729EREQY+/fvN9atW2d07NjReO655yxtTp48abRs2dKIjY01UlNTjTfeeMPw8fExNmzY4NDj9VSJiYlG9+7djZtvvtmYOnWqZTnnzrVdunTJ6Natm/H4448bu3fvNk6ePGl8/vnnxvHjxy1t5s6dawQEBBirV682Dhw4YIwZM8bo8f/bu/e4qsr0//9vDoE6Cp4hUDyUo6KGBuKQmYlMDONoOlNZOkXOZ3SawU8plTkzn7TvlIfG0XEqRjuZ/hoPTDNqZWoiomapKIpJKKZpGgqIBxBQOez794exY8tBQNjA9vV8PPZjZt3rXve61rpp78trr71Wt27m8uXL1j4/+9nPTEBAgNm1a5f57LPPzJ133mkee+wx6/qcnBzj5eVlxo8fb1JSUszKlStN8+bNzZtvvmnX43U0s2bNMu3atTPr1q0zx48fNx988IFp2bKl+cc//mHtw/yhrpFDNQ7kT46DHKrpIX9q+m6lHIqiVCMVHBxsoqKirMslJSXGx8fHzJkzpwGjgjHGZGVlGUlm27ZtxhhjLl68aG677TbzwQcfWPscOnTISDI7d+40xhizfv164+zsbDIyMqx9Fi1aZDw8PMzVq1eNMcZMmzbN9OnTx2ZfY8eONeHh4fV9SA7v0qVLpkePHiYuLs4MHTrUmlAxd43fCy+8YO69995K11ssFuPt7W3mzZtnbbt48aJxd3c3K1euNMYYk5qaaiSZPXv2WPts2LDBODk5mfT0dGOMMf/85z9NmzZtrHNauu+ePXvW9SHdUkaMGGF+85vf2LT98pe/NOPHjzfGMH+oH+RQjRP5U9NEDtU0kT81fbdSDsXP9xqhwsJCJSUlKSwszNrm7OyssLAw7dy5swEjgyTl5ORIktq2bStJSkpKUlFRkc189erVS35+ftb52rlzp/r16ycvLy9rn/DwcOXm5uqrr76y9ik7Rmkf5vzmRUVFacSIEeXOL3PX+H300UcKCgrSww8/rI4dO2rAgAF6++23reuPHz+ujIwMm/Pv6empQYMG2cxh69atFRQUZO0TFhYmZ2dn7d6929rnvvvuk5ubm7VPeHi40tLSdOHChfo+TId1zz33KD4+XkeOHJEkHThwQDt27FBERIQk5g91jxyq8SJ/aprIoZom8qem71bKoVztshfUSHZ2tkpKSmzewCXJy8tLhw8fbqCoIEkWi0VTpkzR4MGD1bdvX0lSRkaG3Nzc1Lp1a5u+Xl5eysjIsPapaD5L11XVJzc3V5cvX1bz5s3r45Ac3qpVq7Rv3z7t2bOn3DrmrvH75ptvtGjRIkVHR+tPf/qT9uzZo6efflpubm6KjIy0zkFF57/s/HTs2NFmvaurq9q2bWvTp1u3buXGKF3Xpk2bejk+Rzd9+nTl5uaqV69ecnFxUUlJiWbNmqXx48dLEvOHOkcO1TiRPzVN5FBNF/lT03cr5VAUpYAaiIqKUkpKinbs2NHQoaAaTp06pWeeeUZxcXFq1qxZQ4eDWrBYLAoKCtLs2bMlSQMGDFBKSooWL16syMjIBo4ON/Lvf/9by5cv14oVK9SnTx8lJydrypQp8vHxYf6AWwj5U9NDDtW0kT81fbdSDsXP9xqh9u3by8XFpdzTKzIzM+Xt7d1AUWHy5Mlat26dEhIS1KlTJ2u7t7e3CgsLdfHiRZv+ZefL29u7wvksXVdVHw8PD74lqqWkpCRlZWXp7rvvlqurq1xdXbVt2za99tprcnV1lZeXF3PXyN1+++3y9/e3aevdu7dOnjwp6Yc5qOr90tvbW1lZWTbri4uLdf78+RrNM2ru+eef1/Tp0/Xoo4+qX79+evzxxzV16lTNmTNHEvOHukcO1fiQPzVN5FBNG/lT03cr5VAUpRohNzc3BQYGKj4+3tpmsVgUHx+vkJCQBozs1mSM0eTJk7VmzRpt2bKl3OWNgYGBuu2222zmKy0tTSdPnrTOV0hIiA4ePGjzphAXFycPDw/rB0ZISIjNGKV9mPPaGz58uA4ePKjk5GTrKygoSOPHj7f+f+aucRs8eHC5R4gfOXJEXbp0kSR169ZN3t7eNuc/NzdXu3fvtpnDixcvKikpydpny5YtslgsGjRokLXP9u3bVVRUZO0TFxennj17cun5TSgoKJCzs22q4eLiIovFIon5Q90jh2o8yJ+aNnKopo38qem7pXIou91SHTWyatUq4+7ubpYuXWpSU1PNpEmTTOvWrW2eXgH7+P3vf288PT3N1q1bzZkzZ6yvgoICa5+nnnrK+Pn5mS1btpi9e/eakJAQExISYl1f+kjcBx54wCQnJ5uNGzeaDh06VPhI3Oeff94cOnTIxMTE8EjcelD2yTHGMHeNXWJionF1dTWzZs0yX3/9tVm+fLlp0aKF+de//mXtM3fuXNO6dWvz4Ycfmi+//NI8+OCDFT4Od8CAAWb37t1mx44dpkePHjaPw7148aLx8vIyjz/+uElJSTGrVq0yLVq04JHGNykyMtL4+vpaH2e8evVq0759ezNt2jRrH+YPdY0cqnEgf3I85FBNB/lT03cr5VAUpRqx119/3fj5+Rk3NzcTHBxsdu3a1dAh3ZIkVfh67733rH0uX75s/vCHP5g2bdqYFi1amDFjxpgzZ87YjHPixAkTERFhmjdvbtq3b2+effZZU1RUZNMnISHB9O/f37i5uZnu3bvb7AN14/qEirlr/D7++GPTt29f4+7ubnr16mXeeustm/UWi8W8+OKLxsvLy7i7u5vhw4ebtLQ0mz7nzp0zjz32mGnZsqXx8PAwEyZMMJcuXbLpc+DAAXPvvfcad3d34+vra+bOnVvvx+bocnNzzTPPPGP8/PxMs2bNTPfu3c2f//xnm8cOM3+oD+RQDY/8yfGQQzUt5E9N262UQzkZY4x9rskCAAAAAAAAruGeUgAAAAAAALA7ilIAAAAAAACwO4pSAAAAAAAAsDuKUgAAAAAAALA7ilIAAAAAAACwO4pSAAAAAAAAsDuKUgAAAAAAALA7ilIAAAAAAACwO4pSAAAAAAAAsDuKUgAAAAAAALA7ilIAAAAAAACwO4pSAAAAAAAAsDuKUgAAAAAAALA7ilIAAAAAAACwO4pSAAAAAAAAsDuKUgAAAAAAALA7ilIAAAAAAACwO4pSAAAAAAAAsDuKUgCatKVLl8rJyUlOTk7asWNHufXGGHXu3FlOTk76xS9+YW0v3aai11NPPVVunM8++0yPPPKIfH195ebmJk9PTw0aNEh/+ctflJmZedPHUVBQoJiYGD3wwAO6/fbb1apVKw0YMECLFi1SSUnJTY8PAABQlqPkUJI0e/Zs/eQnP1GHDh3UrFkz9ejRQ1OmTNHZs2frZHwA9ce1oQMAgLrQrFkzrVixQvfee69N+7Zt2/Tdd9/J3d293DY//elP9cQTT5Rr//GPf2yzPGPGDL388svq3r27nnzySXXv3l1XrlxRUlKS5s+fr2XLlunYsWM3Ff8333yj//3f/9Xw4cMVHR0tDw8Pffrpp/rDH/6gXbt2admyZTc1PgAAQEWaeg4lSUlJSerfv78effRRtWrVSocOHdLbb7+tTz75RMnJyfrRj3500/sAUD8oSgFwCD//+c/1wQcf6LXXXpOr6w9vbStWrFBgYKCys7PLbfPjH/9Yv/71r6scNzY2Vi+//LIeeeQRvf/++3Jzc7NZ//e//11///vfqxzjxIkT6tatmxISEnT//fdX2Mfb21sHDx5Unz59rG2/+93v9Jvf/EbvvfeeXnzxRd15551V7gcAAKCmmnoOJUn//e9/y7WFhITooYce0scff6xHH320yv0AaDj8fA+AQ3jsscd07tw5xcXFWdsKCwv1n//8R+PGjav1uDNmzFD79u317rvvlkumJMnT01MvvfRSrccv1b59e5uCVKkxY8ZIkg4dOnTT+wAAALheU8+hKtO1a1dJ0sWLF+ttHwBuHkUpAA6ha9euCgkJ0cqVK61tGzZsUE5OTqXfjl25ckXZ2dnlXoWFhZKkI0eO6MiRIxo9erRatmxpl+O4XkZGhqRrRSsAAIC65ig5lDFG2dnZysjI0Geffaann35aLi4uVV5hBaDhUZQC4DDGjRuntWvX6vLly5Kk5cuXa+jQofLx8amw/7vvvqsOHTqUe61evVqSdPjwYUlS3759bbYrTXrKvoqLi+v8eAoLC7Vw4UJ169ZNAwcOrPPxAQAAJMfIoTIzM9WhQwfdfvvtuu+++3Ty5EmtWLFCvXr1qpPxAdQP7ikFwGE88sgjmjJlitatW6ef/exnWrdunV577bVK+z/44IOaPHlyufZ+/fpJknJzcyWp3Dd8OTk56tChg03bnj17FBQUJEnKy8vTlStXrOsuXLhg3a7sfRluu+02eXp6Vhrf5MmTlZqaqk8++cTmHg8AAAB1yRFyqLZt2youLk5XrlzR/v37tXr1auXl5d3w2AE0LP6VA8BhdOjQQWFhYVqxYoUKCgpUUlKihx56qNL+nTp1UlhYWKXrW7VqJUnlEpqWLVta77uwadMmzZs3z2b95MmTK3xa3ujRo22Whw4dqq1bt1a473nz5untt9/Wyy+/rJ///OeVxggAAHCzHCGHcnNzs8b0i1/8QsOHD9fgwYPVsWNH/eIXv6g0VgANi6IUAIcybtw4TZw4URkZGYqIiFDr1q1rPVbp5d4pKSk27a6urtak57vvviu33bRp02yeSJOZmalf//rX+tvf/qaAgABre5s2bSrc79KlS/XCCy/oqaee0v/93//VOn4AAIDqcoQcqqx77rlHt99+u5YvX05RCmjEKEoBcChjxozR7373O+3atUuxsbE3NVbPnj3Vo0cPrV27VgsXLtSPfvSjam3n7+8vf39/6/KJEyckSYGBgTe82eaHH36o3/72t/rlL3+pmJiY2oYOAABQI009h6rIlStXlJOTU+PtANgPNzoH4FBatmypRYsW6aWXXtLIkSNveryXXnpJ2dnZmjhxooqKisqtN8bc9D5Kbd++XY8++qjuu+8+LV++XM7OvEUDAAD7aKo5VH5+vgoKCsq1//e//9WFCxes96sC0DhxpRQAhxMZGVmtfkeOHNG//vWvcu1eXl766U9/KunapewpKSmaM2eOEhMT9eijj6pbt27Kz89XSkqKVq5cqVatWlXrMvKqfPvttxo1apScnJz00EMP6YMPPrBZf9ddd+muu+66qX0AAABUpSnmUF9//bXCwsI0duxY9erVS87Oztq7d6/+9a9/qWvXrnrmmWduanwA9YuiFIBbVlxcnPVmm2UNHTrUmlBJ0uzZsxUeHq433nhDS5YsUXZ2tpo3b64f//jHevbZZ/XUU0/J29v7pmI5fvy49fLyqKiocutnzpxJUQoAADQKjSmH6tSpk371q19py5YtWrZsmYqKitSlSxdNnjxZf/7zn9WuXbubGh9A/XIydfnbEwAAAAAAAKAauGEJAAAAAAAA7I6iFAAAAAAAAOyOohQAAAAAAADsjqIUAAAAAAAA7I6iFAAAAAAAAOyOohQAAAAAAADszrWhA2hs1q1bp2effVYWi0UvvPCCfvvb395wG4vFotOnT6tVq1ZycnKyQ5QAAMBejDG6dOmSfHx85OzM93mVqWkORf4EAIDjqm7+5GSMMXaMq1ErLi6Wv7+/EhIS5OnpqcDAQH3xxRdq165dldt999136ty5s52iBAAADeHUqVPq1KlTQ4fRKNUmhyJ/AgDA8d0of+JKqTISExPVp08f+fr6SpIiIiK0adMmPfbYY1Vu16pVK0nXTraHh0e9xwkAAOwnNzdXnTt3tn7eo7za5FDkTwAAOK7q5k92KUrNmTNHq1ev1uHDh9W8eXPdc889evXVV9WzZ88628f27ds1b948JSUl6cyZM1qzZo1Gjx5drl9MTIzmzZunjIwMBQQE6PXXX1dwcLAk6fTp09ZkSpJ8fX2Vnp5+w32XXnLu4eFBUgUAgINqiJ+YOXIORf4EAIDju1H+ZJcbI2zbtk1RUVHatWuX4uLiVFRUpAceeED5+fkV9v/8889VVFRUrj01NVWZmZkVbpOfn6+AgADFxMRUGkdsbKyio6M1c+ZM7du3TwEBAQoPD1dWVlbtDgwAHERhsUU5BeXfdwE0LHIooG6dy7sqi8Wx7l5ypahEuVfq9zPcEc8bgMbBLkWpjRs36sknn1SfPn0UEBCgpUuX6uTJk0pKSirX12KxKCoqSuPGjVNJSYm1PS0tTaGhoVq2bFmF+4iIiNArr7yiMWPGVBrHggULNHHiRE2YMEH+/v5avHixWrRooSVLlkiSfHx8bL7VS09Pl4+PT20PGwCajJ/+fZsC/rJJWblXGjoUAGWQQwF1J+nbCwp8ZbN++//tbehQ6tTAWZt110ub6q0w5ajnDUDj0CCPkMnJyZEktW3bttw6Z2dnrV+/Xvv379cTTzwhi8WiY8eOKTQ0VKNHj9a0adNqtc/CwkIlJSUpLCzMZl9hYWHauXOnJCk4OFgpKSlKT09XXl6eNmzYoPDw8ErHjImJkb+/vwYOHFirmACgsfj2XIEkaduRsw0cCYCqOEIORf6EhrLsixOSpC2HHesKv0tXiiVJX6Xn1sv4jnreADQOdi9KWSwWTZkyRYMHD1bfvn0r7OPj46MtW7Zox44dGjdunEJDQxUWFqZFixbVer/Z2dkqKSmRl5eXTbuXl5cyMjIkSa6urpo/f76GDRum/v3769lnn63yqTFRUVFKTU3Vnj17ah0XAABAdThKDkX+BAAAStn96XtRUVFKSUnRjh07quzn5+en999/X0OHDlX37t317rvv2uUGo6NGjdKoUaPqfT8AAAA1QQ4FAAAcjV2vlJo8ebLWrVunhIQEderUqcq+mZmZmjRpkkaOHKmCggJNnTr1pvbdvn17ubi4lLvJZ2Zmpry9vW9qbAAAgPpEDgUAAByRXYpSxhhNnjxZa9as0ZYtW9StW7cq+2dnZ2v48OHq3bu3Vq9erfj4eMXGxuq5556rdQxubm4KDAxUfHy8tc1isSg+Pl4hISG1HhcAAKC+kEMBAABHZpef70VFRWnFihX68MMP1apVK+v9Bzw9PdW8eXObvhaLRREREerSpYtiY2Pl6uoqf39/xcXFKTQ0VL6+vhV+45eXl6ejR49al48fP67k5GS1bdtWfn5+kqTo6GhFRkYqKChIwcHBWrhwofLz8zVhwoR6PHoAAIDaIYcCAACOzC5FqdKba95///027e+9956efPJJmzZnZ2fNnj1bQ4YMkZubm7U9ICBAmzdvVocOHSrcx969ezVs2DDrcnR0tCQpMjJSS5culSSNHTtWZ8+e1YwZM5SRkaH+/ftr48aN5W7cCQAA0BiQQwEAAEdml6KUMaZG/X/6059W2D5gwIBKt7n//vurtZ/Jkydr8uTJNYoHAACgIZBDAQAAR2bXG503BevWrVPPnj3Vo0cPvfPOOw0dDgAAQJNADgUAAGrKLldKNRXFxcWKjo5WQkKCPD09FRgYqDFjxqhdu3YNHRoAAECjRQ4FAABqgyulykhMTFSfPn3k6+urli1bKiIiQps2bWrosAAAABo1cigAAFAbNS5Kbd++XSNHjpSPj4+cnJy0du3aKvuXlJToxRdfVLdu3dS8eXPdcccdevnll2t8j4S6iismJkZdu3ZVs2bNNGjQICUmJlrXnT59Wr6+vtZlX19fpaen12mcAADg1kQOBQAAYKvGRan8/HwFBAQoJiamWv1fffVVLVq0SG+88YYOHTqkV199VX/961/1+uuvV7rN559/rqKionLtqampyszMrHVcsbGxio6O1syZM7Vv3z4FBAQoPDxcWVlZ1ToWAACA2iKHAgAAsFXjolRERIReeeUVjRkzplr9v/jiCz344IMaMWKEunbtqoceekgPPPCAzbdrZVksFkVFRWncuHEqKSmxtqelpSk0NFTLli2rdVwLFizQxIkTNWHCBPn7+2vx4sVq0aKFlixZIkny8fGx+VYvPT1dPj4+1TpOAACAqpBDAQAA2Kr3e0rdc889io+P15EjRyRJBw4c0I4dOxQREVFxQM7OWr9+vfbv368nnnhCFotFx44dU2hoqEaPHq1p06bVKo7CwkIlJSUpLCzMZl9hYWHauXOnJCk4OFgpKSlKT09XXl6eNmzYoPDw8ErHjImJkb+/vwYOHFirmAAAACrjqDkU+RMAAChV70/fmz59unJzc9WrVy+5uLiopKREs2bN0vjx4yvdxsfHR1u2bNGQIUM0btw47dy5U2FhYVq0aFGt48jOzlZJSYm8vLxs2r28vHT48GFJkqurq+bPn69hw4bJYrFo2rRpVT41JioqSlFRUcrNzZWnp2etYwMAALieo+ZQ5E8AAKBUvRel/v3vf2v58uVasWKF+vTpo+TkZE2ZMkU+Pj6KjIysdDs/Pz+9//77Gjp0qLp37653331XTk5O9R2uRo0apVGjRtX7fgAAAKpCDgUAABxdvf987/nnn9f06dP16KOPql+/fnr88cc1depUzZkzp8rtMjMzNWnSJI0cOVIFBQWaOnXqTcXRvn17ubi4lLvJZ2Zmpry9vW9qbAAAgLpGDgUAABxdvRelCgoK5OxsuxsXFxdZLJZKt8nOztbw4cPVu3dvrV69WvHx8YqNjdVzzz1X6zjc3NwUGBio+Ph4a5vFYlF8fLxCQkJqPS4AAEB9IIcCAACOrsY/38vLy9PRo0ety8ePH1dycrLatm0rPz8/vfHGG1qzZo01cRk5cqRmzZolPz8/9enTR/v379eCBQv0m9/8psLxLRaLIiIi1KVLF8XGxsrV1VX+/v6Ki4tTaGiofH19K/zG70ZxSVJ0dLQiIyMVFBSk4OBgLVy4UPn5+ZowYUJNTwMAAECNkEMBAADYqnFRau/evRo2bJh1OTo6WpIUGRmppUuXKjs7W8eOHbOuf/311/Xiiy/qD3/4g7KysuTj46Pf/e53mjFjRoXjOzs7a/bs2RoyZIjc3Nys7QEBAdq8ebM6dOhQq7gkaezYsTp79qxmzJihjIwM9e/fXxs3bix3404AAIC6Rg4FAABgy8kYYxo6iKau9OkxOTk58vDwaOhwAKDGuk7/RJI076G79HBQ5waOBmhc+JyvH5xX2NvTK/frowOnJUkn5o5o4GjqTuln+MqJP1HIHZU/Oby2HPW8Aahf1f2cr/d7SgEAAAAAAADXoygFAAAAAAAAu6ModZ1169apZ8+e6tGjh955552GDgcAAKDRI38CAAC1UeMbnTuy4uJiRUdHKyEhQZ6engoMDNSYMWPUrl3d/zYbAADAEZA/AQCA2uJKqTISExPVp08f+fr6qmXLloqIiNCmTZsaOiwAAIBGi/wJAADUVo2LUtu3b9fIkSPl4+MjJycnrV27tlrbpaen69e//rXatWun5s2bq1+/ftq7d29Nd3/TscXExKhr165q1qyZBg0apMTEROu606dPy9fX17rs6+ur9PT0Oo0RAADcesifAAAAyqtxUSo/P18BAQGKiYmp9jYXLlzQ4MGDddttt2nDhg1KTU3V/Pnz1aZNmwr7f/755yoqKirXnpqaqszMzFrHFhsbq+joaM2cOVP79u1TQECAwsPDlZWVVe1jAQAAqCnyJwAAgPJqfE+piIgIRURE1GibV199VZ07d9Z7771nbevWrVuFfS0Wi6KiotSjRw+tWrVKLi4ukqS0tDSFhoYqOjpa06ZNq1VsCxYs0MSJEzVhwgRJ0uLFi/XJJ59oyZIlmj59unx8fGy+2UtPT1dwcHCNjhUAAOB65E8AAADl2eWeUh999JGCgoL08MMPq2PHjhowYIDefvvtigNydtb69eu1f/9+PfHEE7JYLDp27JhCQ0M1evToShOqGyksLFRSUpLCwsJs9hUWFqadO3dKkoKDg5WSkqL09HTl5eVpw4YNCg8Pr3TMmJgY+fv7a+DAgbWKCQAAoDLkTwAAwNHZpSj1zTffaNGiRerRo4c+/fRT/f73v9fTTz+tZcuWVdjfx8dHW7Zs0Y4dOzRu3DiFhoYqLCxMixYtqnUM2dnZKikpkZeXl027l5eXMjIyJEmurq6aP3++hg0bpv79++vZZ5+t8skxUVFRSk1N1Z49e2odFwAAQEXInwAAgKOr8c/3asNisSgoKEizZ8+WJA0YMEApKSlavHixIiMjK9zGz89P77//voYOHaru3bvr3XfflZOTU73HOmrUKI0aNare9wMAAFAV8icAAODo7HKl1O233y5/f3+btt69e+vkyZOVbpOZmalJkyZp5MiRKigo0NSpU28qhvbt28vFxaXcjT4zMzPl7e19U2MDAADUNfInAADg6OxSlBo8eLDS0tJs2o4cOaIuXbpU2D87O1vDhw9X7969tXr1asXHxys2NlbPPfdcrWNwc3NTYGCg4uPjrW0Wi0Xx8fEKCQmp9bgAAAD1gfwJAAA4uhr/fC8vL09Hjx61Lh8/flzJyclq27at/Pz89MYbb2jNmjU2ycvUqVN1zz33aPbs2XrkkUeUmJiot956S2+99Va58S0WiyIiItSlSxfFxsbK1dVV/v7+iouLU2hoqHx9fSv91u9GsUVHRysyMlJBQUEKDg7WwoULlZ+fb32aDAAAQH0gfwIAACivxkWpvXv3atiwYdbl6OhoSVJkZKSWLl2q7OxsHTt2zGabgQMHas2aNfrjH/+ov/zlL+rWrZsWLlyo8ePHlxvf2dlZs2fP1pAhQ+Tm5mZtDwgI0ObNm9WhQ4daxzZ27FidPXtWM2bMUEZGhvr376+NGzeWu3knAABAXSJ/AgAAKM/JGGMaOoimLjc3V56ensrJyZGHh0dDhwMANdZ1+ieSpHkP3aWHgzo3cDRA48LnfP3gvMLenl65Xx8dOC1JOjF3RANHU3dKP8NXTvyJQu6o/MmXteWo5w1A/aru57xd7ikFAAAAAAAAlEVRCgAAAAAAAHZHUQoAAAAAAAB2R1EKAAAAAAAAdkdR6jrr1q1Tz5491aNHD73zzjsNHQ4AAECjR/4EAABqw7WhA2hMiouLFR0drYSEBHl6eiowMFBjxoxRu3Z1/xQLAAAAR0D+BAAAaosrpcpITExUnz595Ovrq5YtWyoiIkKbNm1q6LAAAAAaLfInAABQWzUuSm3fvl0jR46Uj4+PnJyctHbt2hptP3fuXDk5OWnKlCk13XWdxBYTE6OuXbuqWbNmGjRokBITE63rTp8+LV9fX+uyr6+v0tPT6zxOAABwayF/AgAAKK/GRan8/HwFBAQoJiamxjvbs2eP3nzzTd11111V9vv8889VVFRUrj01NVWZmZm1ji02NlbR0dGaOXOm9u3bp4CAAIWHhysrK6tmBwIAAFAD5E8AAADl1bgoFRERoVdeeUVjxoyp0XZ5eXkaP3683n77bbVp06bSfhaLRVFRURo3bpxKSkqs7WlpaQoNDdWyZctqHduCBQs0ceJETZgwQf7+/lq8eLFatGihJUuWSJJ8fHxsvtlLT0+Xj49PjY4TAADgeuRPAAAA5dntnlJRUVEaMWKEwsLCquzn7Oys9evXa//+/XriiSdksVh07NgxhYaGavTo0Zo2bVqt9l9YWKikpCSb/Ts7OyssLEw7d+6UJAUHByslJUXp6enKy8vThg0bFB4eXumYMTEx8vf318CBA2sVEwAAQFXInwAAgCOzy9P3Vq1apX379mnPnj3V6u/j46MtW7ZoyJAhGjdunHbu3KmwsDAtWrSo1jFkZ2erpKREXl5eNu1eXl46fPiwJMnV1VXz58/XsGHDZLFYNG3atCqfHBMVFaWoqCjl5ubK09Oz1rEBAABcj/wJAAA4unovSp06dUrPPPOM4uLi1KxZs2pv5+fnp/fff19Dhw5V9+7d9e6778rJyakeI71m1KhRGjVqVL3vBwAAoDLkTwAA4FZQ7z/fS0pKUlZWlu6++265urrK1dVV27Zt02uvvSZXV1eb+x6UlZmZqUmTJmnkyJEqKCjQ1KlTbyqO9u3by8XFpdyNPjMzM+Xt7X1TYwMAANQl8icAAHArqPei1PDhw3Xw4EElJydbX0FBQRo/frySk5Pl4uJSbpvs7GwNHz5cvXv31urVqxUfH6/Y2Fg999xztY7Dzc1NgYGBio+Pt7ZZLBbFx8crJCSk1uMCAADUNfInAABwK6jxz/fy8vJ09OhR6/Lx48eVnJystm3bys/PT2+88YbWrFljTV5atWqlvn372ozxox/9SO3atSvXLl1LdCIiItSlSxfFxsbK1dVV/v7+iouLU2hoqHx9fSv91u9GsUVHRysyMlJBQUEKDg7WwoULlZ+frwkTJtT0NAAAAFQb+RMAAEB5NS5K7d27V8OGDbMuR0dHS5IiIyO1dOlSZWdn69ixY7UOyNnZWbNnz9aQIUPk5uZmbQ8ICNDmzZvVoUOHWsc2duxYnT17VjNmzFBGRob69++vjRs3lrt5JwAAQF0ifwIAACjPyRhjGjqIpq706TE5OTny8PBo6HAAoMa6Tv9EkjTvobv0cFDnBo4GaFz4nK8fnFfY29Mr9+ujA6clSSfmjmjgaOpO6Wf4yok/UcgdlT/5srYc9bwBqF/V/Zyv93tKAQAAAAAAANejKAUAAAAAAAC7oygFAAAAAAAAu6MoBQAAAAAAALujKAUAAAAAAAC7oygFAAAAAAAAu6MoBQAAAAAAALujKFWBdevWqWfPnurRo4feeeedhg4HAACg0SN/AgAANeXa0AE0NsXFxYqOjlZCQoI8PT0VGBioMWPGqF27dg0dGgAAQKNE/gQAAGqDK6Wuk5iYqD59+sjX11ctW7ZURESENm3a1NBhAQAANFrkTwAAoDZqVZTavn27Ro4cKR8fHzk5OWnt2rVV9p8zZ44GDhyoVq1aqWPHjho9erTS0tJqs+s6iSsmJkZdu3ZVs2bNNGjQICUmJlrXnT59Wr6+vtZlX19fpaen13msAADg1kL+BAAAYKtWRan8/HwFBAQoJiamWv23bdumqKgo7dq1S3FxcSoqKtIDDzyg/Pz8Srf5/PPPVVRUVK49NTVVmZmZtY4rNjZW0dHRmjlzpvbt26eAgACFh4crKyurWscCAABQG+RPAAAAtmp1T6mIiAhFRERUu//GjRttlpcuXaqOHTsqKSlJ9913X7n+FotFUVFR6tGjh1atWiUXFxdJUlpamkJDQxUdHa1p06bVKq4FCxZo4sSJmjBhgiRp8eLF+uSTT7RkyRJNnz5dPj4+Nt/spaenKzg4uNrHCgAAUBHyJwAAAFsNck+pnJwcSVLbtm0rXO/s7Kz169dr//79euKJJ2SxWHTs2DGFhoZq9OjRFSZU1VFYWKikpCSFhYXZ7CssLEw7d+6UJAUHByslJUXp6enKy8vThg0bFB4eXuF4MTEx8vf318CBA2sVDwAAQHWRPwEAAEdj96KUxWLRlClTNHjwYPXt27fSfj4+PtqyZYt27NihcePGKTQ0VGFhYVq0aFGt952dna2SkhJ5eXnZtHt5eSkjI0OS5Orqqvnz52vYsGHq37+/nn322UqfHBMVFaXU1FTt2bOn1jEBAADcCPkTAABwRLX6+d7NiIqKUkpKinbs2HHDvn5+fnr//fc1dOhQde/eXe+++66cnJzqPcZRo0Zp1KhR9b4fAACA6iB/AgAAjsiuV0pNnjxZ69atU0JCgjp16nTD/pmZmZo0aZJGjhypgoICTZ069ab23759e7m4uJS70WdmZqa8vb1vamwAAID6QP4EAAAclV2KUsYYTZ48WWvWrNGWLVvUrVu3G26TnZ2t4cOHq3fv3lq9erXi4+MVGxur5557rtZxuLm5KTAwUPHx8dY2i8Wi+Ph4hYSE1HpcAACAukb+BAAAHF2tfr6Xl5eno0ePWpePHz+u5ORktW3bVn5+fnrjjTe0Zs0aa/ISFRWlFStW6MMPP1SrVq2s9x/w9PRU8+bNy41vsVgUERGhLl26KDY2Vq6urvL391dcXJxCQ0Pl6+tb4bd+N4pLkqKjoxUZGamgoCAFBwdr4cKFys/Ptz5NBgAAoD6QPwEAANiqVVFq7969GjZsmHU5OjpakhQZGamlS5cqOztbx44ds64vvbnm/fffbzPOe++9pyeffLLc+M7Ozpo9e7aGDBkiNzc3a3tAQIA2b96sDh061CouSRo7dqzOnj2rGTNmKCMjQ/3799fGjRvL3bwTAACgLpE/AQAA2HIyxpiGDqKpy83Nlaenp3JycuTh4dHQ4QBAjXWd/okkad5Dd+nhoM4NHA3QuPA5Xz84r7C3p1fu10cHTkuSTswd0cDR1J3Sz/CVE3+ikDsqfurlzXDU8wagflX3c96uNzoHAAAAAAAAJIpSAAAAAAAAaAAUpQAAAAAAAGB3FKUAAAAAAABgdxSlAAAAAAAAYHcUpQAAAAAAAGB3FKUAAAAAAABgdxSlAAAAAAAAYHcUpQAAAAAAAGB3FKUAAAAAAABgdxSlvrdu3Tr17NlTPXr00DvvvNPQ4QAAADR65E8AAOBmuDZ0AI1BcXGxoqOjlZCQIE9PTwUGBmrMmDFq165dQ4cGAADQKJE/AQCAm8WVUpISExPVp08f+fr6qmXLloqIiNCmTZsaOiwAAIBGi/wJAADcLIcoSm3fvl0jR46Uj4+PnJyctHbt2nJ9YmJi1LVrVzVr1kyDBg1SYmKidd3p06fl6+trXfb19VV6ero9QgcAAGgQ5E8AAKChOURRKj8/XwEBAYqJialwfWxsrKKjozVz5kzt27dPAQEBCg8PV1ZWlp0jBQAAaBzInwAAQENziKJURESEXnnlFY0ZM6bC9QsWLNDEiRM1YcIE+fv7a/HixWrRooWWLFkiSfLx8bH5Zi89PV0+Pj52iR23hoS0LP1pzUHlXS3WRwdO63x+YYX9jmbl6Z3PvtHm1Exr28LNR7R897eSpAv5hfowOV0rE09q8NwtmrP+kIpKLNa+xhh9+lWGlu/+VusPnlFcmXFKXSkq0dLPj+uhRV/o1PmCG8aenXdVHx04rcJii0373hPnNexvW9V1+ifqOv0T/XTBNl3IL1T8oUwdO5tn7ZeRc0Xrvjyt4hLL9UNryY7jWrT1mM15OpJ56YYxGWO04eAZ/XvvKaWk51zb9nCWln1xQl+dvrb85XcXtfPYOZvjXrP/O72/84Sycq9o01cZOp6dL0m6Wlyijw6c1rm8q5Kk7y4UaMPBMzLGSJJ2fJ1tHbcyh87kavuRs5Kk3CtF+jA5XflXi8v1y867qnd3HNfqfd+pqMSiDQfPKCEtSwmHK/9H3q5vzinp2/P6+MBpnb10Lcacgmv7WLLjuF5cm6IPk9N16Eyuthy2nfMDpy5q1zfndPriZX3y5RmVWEylcypJG1IyZLGYKo9Vki4WXPtbvFxYon0nL2jvifM33KbU9fNcWGzRRwdOK/v78y9Jn319VofO5OpK0bW5OXvpqtZ9eVpZuVcqHDPr0hW9vC5VHx84Xemx1ZTFYrT+4BmlX7x802PVh4TDWTqadeP/XurC0aw8xR8q/35SG4nHzyv51EWbtvyrxfowOV25V4rqZB+oHvInNAX/3nNKD76xQ69uPKysS1es70eFxRZ9fOC09p44r0+/ypAxRiUWo0++PKOMnGufFTuPnVN0bLKKSiz66nSOvjiWXel+KsoF1h88o4LCYsUkHNWb244pds9J/XvvKX2w95S+PZdvs/2CuCN64O/bVFxi0fLd3+q+vyZo9zfn1HX6J/rVoi9u+FmSejpXO76+Fl/+1WIt2XFcj7y5U2Pf3KknliRqzoZD+jD52n9vyacu6oX/fKnz+YVKy/jhc6A0V/ns67NKPZ0rSdpz4rz2nbxQrv16CWlZ2nnsnPUzNCX92vmKS81U0rcXrP0yc68oI+eKPth7Sgs3H9EHe0/p068ydOL7nOrU+QL978r9lR6vxWK0YvdJLdp6TFeKSio9H9+ey9fGlAxlXbqijw+cVkJalv668bC+OZun/yR9p/d3fWuTN0hSSnqOth05q48PnFbWpYrzhaokfVt1PlOaH+49cd7mnEjSpe9zv7wKcr/KVJT/VGTnsXP68ruL1R7XURWVWKrMBavjaFZeuVzZHr45m6c56w9p//f/LZa+j5X+2+5KUYk1t79cWPl/F47KyZT+q8tBODk5ac2aNRo9erQkqbCwUC1atNB//vMfa5skRUZG6uLFi/rwww9VXFys3r17a+vWrdYbdX7xxReV3qjz6tWrunr1hzeP3Nxcde7cWTk5OfLw8KjPw0MT1XX6JzbLPb1a6dOp91XZb9Wkn8jV2UkPLd4pSdrz5zA9+V6ivroumXjhZ730+/vvkCTFH8rU/yzba7N++W8HafCd7a3L/+/jr/Te5yesyyfmjqgy9iF/3aJT5y8ratgdej68lyQp72qx+s78tMrtSsft9eIGXSmyaOZIf00Y3M26PjP3igbNjpckJTx3vwoKizXitR3ViumjA6f19Mr91uUPowbrwZjPbfZdei4T/zxcHVs108vrUvXujuMVxjlnwyG9ue0bdW3XQlufH2bd9u9jAxTo11b3zUu4YVyl22yOHqr/9/FX+uzrbI2463bFjLvbpt99f03Qye+LgX19PZSS/sN8fjR5sO7q1Nqmf3beVQW9stm67OPZTF/8cbgeXvyF9pywTYhK/ff39yiwSxubuErNHtNPi7YdLTenZfvNfzhAvwrsVOmxStKDMZ/rwKmLeiiwk/6T9J0k6eBLD6hVs9uq3C4lPUe/eN12nv/2aZreSDiqTm2aa8cLoTp2Nk/D52+TJEWGdNGynd9at2/T4jbtn/FAuXEH/GWTLhT8UNB4OvRORT/Qs8pYbuQ/Sd/puQ8O2MTaWOw/eUFj/vmFJPvEVvr38Z+nQhTUtW2tx8kpKFLAX67dc+jY7J/LxdlJkjR5xT6t+/KMhvRor/f/Z9DNB1zHcnNz5enp6dCf8+RPaIwKiy368f9tsC53bOWurO+/nBnSo70++/qHItN7Tw7Ut+fy9dLHqWp2m7MOvxxhfe8K6+2lzdcV1g+//DM1u83FuvzqxsNatPWYurRroW1lcgF3V2ddreSLjtL334LCYvnPuJYXBXdtq8RKChvVySO2Pne/5n2apk8Onqmw36pJP9Gjb+2SJN3m4qSiEtt/yiU8d7+G/W2rpGufy/1euvaeGzf1Pv3079srjOOr0znWHEySoobdoZiEY6qIRzNXXS22VHhOyuZflR3v2v3pmhKbLEl68p6uemlUnwr3c33+UhHf1s31+fTQCrfp2MpdiX8Ou+EYpa4Wl6jn/22UJH31/8L1I/fyzwO7Pqayf0O/XbZHmw9lKay3l96JDKrWPhdsStNrW46WO46ysi5dUfCsa/lyY8tF7G3xtmOau+GwWre4TckV5ILVUTqHZXNleyj7t3Ns9s91x5/W26yPDOmig+k52nfyoh4O7KR5DwfYLbb6VN38ySGulKpKdna2SkpK5OXlZdPu5eWljIwMSZKrq6vmz5+vYcOGqX///nr22WerfHLMnDlz5OnpaX117ty5Xo8BjietGlcDpaTn2BSgsi5dKVeQkmRzhc3139pI0oHrvln55MuKk5zKnDp/7ZuuT7/6IZm7VIOrGa4UXUtatn1/FVGpMzk/fMtxIju/WldIlUo8fs5m+dCZir/1k6Ss3GvJ64ZKkjtJ2phy7b3gxDnbK8d2HTtvLSBV1/HsfGuSXNG5Ljte2YKUJB0+U/4clF4ZVer09+etsoKUJKVWcVXX50ezK5zTsr44dq7C9rIOfH+lS2lBSpJyr9z428Gy3+iW2pR67fx/d+FaXKXftkrSx9edw7KFp6raN1VwlWBN7azGeWgohyr4W7GHit6DauJCwQ9XiZaUuSJv3ffzXPYfmGhY5E9oDIquu8o661LZK2pt3y/2n7xgzTVKc49S1xekJKnguqsRPv3q2t/1t9flApUVpMoqe3VMZQWp6jpxLr/SgpQk6xXiksoVpCTbz9Cyn8tV5Z7X52CV5QelY1bnnFRmd5kcbl0Nc9LrVXX1Wdalqq8+ul7Zv5nqXu1U9m9o86Gs7/+3+vlHaa5S5XHk1uw4HFnpv3kuVpIL1kRVuXJ9K6ngFwnrvjyjfScvSpLWJt9692YsXwK+RY0aNUqjRo2qVt8//vGPio6Oti6XftMHAABwKyF/AgAAN8Phi1Lt27eXi4uLMjNtq9aZmZny9vau1Zju7u5yd3evi/AAAAAaHfInAABgDw5flHJzc1NgYKDi4+Ot90SwWCyKj4/X5MmT62Qfpbflys29uZ81wHFZrpb/CVhFfy9l+13Ov6RiF2drW96l3ArHKbrsbh3rSn5euT6X8y/Z7KvkSr4sV3/4Cc2N/m5Lxyu+4mTteyn3coWxVHR8pf0KL+fZ7Kvs8eTnXVLB5ULr8o1iulpge5wFeZdslnNzc23OW26uk4qv5Mtytfwl0Lm5ud+vu1xu26sFecovM3ZVcZU9lutjqahfRQryLpXrX9G8l42xImXn/Pp+hWXOXdk5LdvvakFetf8uyrqUm6tc56ovqS6o4HxeO/8/tJU9hyUuRbJctR3zRv/tXBvT+abfk8v+nTW29/eC/Or9XdaV0n1d/35SU5cu2c61m6uzzfil7Y1NaUwOdhvOKpE/oTHIv1p8w3yj1JX8PBVetn3frmrb3NxcuZa4WZev/yyqzn6tedGlKzXqX5HK8ojrXc6ven3Z7S+VOY6KPn9LXZ9HFV9xqvZ5L+v681bR8Zb9bC1xLa70nFR3/2W3ryhfqq7cy0U25625yj+UqKLxS/+GavM5dv3fXEXK5oG3+ntl0eUbn68bqat8prb7lSp+fymb71pcnBxmrqudPxkHcOnSJbN//36zf/9+I8ksWLDA7N+/33z77bfGGGNWrVpl3N3dzdKlS01qaqqZNGmSad26tcnIyKiT/Z86dcpI4sWLFy9evHg58OvUqVN1kjc0FuRPvHjx4sWLF6/6ft0of3KIp+9t3bpVw4YNK9ceGRmppUuXSpLeeOMNzZs3TxkZGerfv79ee+01DRpUN0/4sVgsOn36tFq1aiUnJ6c6GbNU6f0WTp06xZNpmiDmr2lj/po+5rBpayzzZ4zRpUuX5OPjI2dnx3lGDPkTGjPmsGlj/po25q9payzzV938ySGKUo7sVngMtSNj/po25q/pYw6bNuYPtcXfTtPHHDZtzF/Txvw1bU1t/hzn6z4AAAAAAAA0GRSlAAAAAAAAYHcUpRo5d3d3zZw5k0coN1HMX9PG/DV9zGHTxvyhtvjbafqYw6aN+WvamL+mranNH/eUAgAAAAAAgN1xpRQAAAAAAADsjqIUAAAAAAAA7I6iFAAAAAAAAOyOohQAAAAAAADsjqJUIxYTE6OuXbuqWbNmGjRokBITExs6pFvSnDlzNHDgQLVq1UodO3bU6NGjlZaWZtPnypUrioqKUrt27dSyZUv96le/UmZmpk2fkydPasSIEWrRooU6duyo559/XsXFxTZ9tm7dqrvvvlvu7u668847tXTp0vo+vFvK3Llz5eTkpClTpljbmLvGLz09Xb/+9a/Vrl07NW/eXP369dPevXut640xmjFjhm6//XY1b95cYWFh+vrrr23GOH/+vMaPHy8PDw+1bt1a//M//6O8vDybPl9++aWGDBmiZs2aqXPnzvrrX/9ql+NzZCUlJXrxxRfVrVs3NW/eXHfccYdefvlllX3GCvOH+kAO1fDInxwLOVTTQ/7UtN1SOZRBo7Rq1Srj5uZmlixZYr766iszceJE07p1a5OZmdnQod1ywsPDzXvvvWdSUlJMcnKy+fnPf278/PxMXl6etc9TTz1lOnfubOLj483evXvNT37yE3PPPfdY1xcXF5u+ffuasLAws3//frN+/XrTvn1788c//tHa55tvvjEtWrQw0dHRJjU11bz++uvGxcXFbNy40a7H66gSExNN165dzV133WWeeeYZaztz17idP3/edOnSxTz55JNm9+7d5ptvvjGffvqpOXr0qLXP3Llzjaenp1m7dq05cOCAGTVqlOnWrZu5fPmytc/PfvYzExAQYHbt2mU+++wzc+edd5rHHnvMuj4nJ8d4eXmZ8ePHm5SUFLNy5UrTvHlz8+abb9r1eB3NrFmzTLt27cy6devM8ePHzQcffGBatmxp/vGPf1j7MH+oa+RQjQP5k+Mgh2p6yJ+avlsph6Io1UgFBwebqKgo63JJSYnx8fExc+bMacCoYIwxWVlZRpLZtm2bMcaYixcvmttuu8188MEH1j6HDh0ykszOnTuNMcasX7/eODs7m4yMDGufRYsWGQ8PD3P16lVjjDHTpk0zffr0sdnX2LFjTXh4eH0fksO7dOmS6dGjh4mLizNDhw61JlTMXeP3wgsvmHvvvbfS9RaLxXh7e5t58+ZZ2y5evGjc3d3NypUrjTHGpKamGklmz5491j4bNmwwTk5OJj093RhjzD//+U/Tpk0b65yW7rtnz551fUi3lBEjRpjf/OY3Nm2//OUvzfjx440xzB/qBzlU40T+1DSRQzVN5E9N362UQ/HzvUaosLBQSUlJCgsLs7Y5OzsrLCxMO3fubMDIIEk5OTmSpLZt20qSkpKSVFRUZDNfvXr1kp+fn3W+du7cqX79+snLy8vaJzw8XLm5ufrqq6+sfcqOUdqHOb95UVFRGjFiRLnzy9w1fh999JGCgoL08MMPq2PHjhowYIDefvtt6/rjx48rIyPD5vx7enpq0KBBNnPYunVrBQUFWfuEhYXJ2dlZu3fvtva577775ObmZu0THh6utLQ0Xbhwob4P02Hdc889io+P15EjRyRJBw4c0I4dOxQRESGJ+UPdI4dqvMifmiZyqKaJ/Knpu5VyKFe77AU1kp2drZKSEps3cEny8vLS4cOHGygqSJLFYtGUKVM0ePBg9e3bV5KUkZEhNzc3tW7d2qavl5eXMjIyrH0qms/SdVX1yc3N1eXLl9W8efP6OCSHt2rVKu3bt0979uwpt465a/y++eYbLVq0SNHR0frTn/6kPXv26Omnn5abm5siIyOtc1DR+S87Px07drRZ7+rqqrZt29r06datW7kxSte1adOmXo7P0U2fPl25ubnq1auXXFxcVFJSolmzZmn8+PGSxPyhzpFDNU7kT00TOVTTRf7U9N1KORRFKaAGoqKilJKSoh07djR0KKiGU6dO6ZlnnlFcXJyaNWvW0OGgFiwWi4KCgjR79mxJ0oABA5SSkqLFixcrMjKygaPDjfz73//W8uXLtWLFCvXp00fJycmaMmWKfHx8mD/gFkL+1PSQQzVt5E9N362UQ/HzvUaoffv2cnFxKff0iszMTHl7ezdQVJg8ebLWrVunhIQEderUydru7e2twsJCXbx40aZ/2fny9vaucD5L11XVx8PDg2+JaikpKUlZWVm6++675erqKldXV23btk2vvfaaXF1d5eXlxdw1crfffrv8/f1t2nr37q2TJ09K+mEOqnq/9Pb2VlZWls364uJinT9/vkbzjJp7/vnnNX36dD366KPq16+fHn/8cU2dOlVz5syRxPyh7pFDNT7kT00TOVTTRv7U9N1KORRFqUbIzc1NgYGBio+Pt7ZZLBbFx8crJCSkASO7NRljNHnyZK1Zs0Zbtmwpd3ljYGCgbrvtNpv5SktL08mTJ63zFRISooMHD9q8KcTFxcnDw8P6gRESEmIzRmkf5rz2hg8froMHDyo5Odn6CgoK0vjx463/n7lr3AYPHlzuEeJHjhxRly5dJEndunWTt7e3zfnPzc3V7t27bebw4sWLSkpKsvbZsmWLLBaLBg0aZO2zfft2FRUVWfvExcWpZ8+eXHp+EwoKCuTsbJtquLi4yGKxSGL+UPfIoRoP8qemjRyqaSN/avpuqRzKbrdUR42sWrXKuLu7m6VLl5rU1FQzadIk07p1a5unV8A+fv/73xtPT0+zdetWc+bMGeuroKDA2uepp54yfn5+ZsuWLWbv3r0mJCTEhISEWNeXPhL3gQceMMnJyWbjxo2mQ4cOFT4S9/nnnzeHDh0yMTExPBK3HpR9cowxzF1jl5iYaFxdXc2sWbPM119/bZYvX25atGhh/vWvf1n7zJ0717Ru3dp8+OGH5ssvvzQPPvhghY/DHTBggNm9e7fZsWOH6dGjh83jcC9evGi8vLzM448/blJSUsyqVatMixYteKTxTYqMjDS+vr7WxxmvXr3atG/f3kybNs3ah/lDXSOHahzInxwPOVTTQf7U9N1KORRFqUbs9ddfN35+fsbNzc0EBwebXbt2NXRItyRJFb7ee+89a5/Lly+bP/zhD6ZNmzamRYsWZsyYMebMmTM245w4ccJERESY5s2bm/bt25tnn33WFBUV2fRJSEgw/fv3N25ubqZ79+42+0DduD6hYu4av48//tj07dvXuLu7m169epm33nrLZr3FYjEvvvii8fLyMu7u7mb48OEmLS3Nps+5c+fMY489Zlq2bGk8PDzMhAkTzKVLl2z6HDhwwNx7773G3d3d+Pr6mrlz59b7sTm63Nxc88wzzxg/Pz/TrFkz0717d/PnP//Z5rHDzB/qAzlUwyN/cjzkUE0L+VPTdivlUE7GGGOfa7IAAAAAAACAa7inFAAAAAAAAOyOohQAAAAAAADsjqIUAAAAAAAA7I6iFAAAAAAAAOyOohQAAAAAAADsjqIUAAAAAAAA7I6iFAAAAAAAAOyOohQAAAAAAADsjqIUAAAAAAAA7I6iFAAAAAAAAOyOohQAAAAAAADsjqIUAAAAAAAA7O7/BweLQtDiUyZyAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"matplotlib.rcParams['figure.figsize'] = (12, 10)\n",
"\n",
"for i in range(len(spec_table)):\n",
"\n",
" ax = plt.subplot(6,2,i+1)\n",
" pha = plt.plot( spec_table['CHANNEL'][i],spec_table['COUNTS'][i])\n",
" ax.set_yscale('log')\n",
"\n",
" if spec_table['TG_PART'][i] == 1:\n",
" instr='HEG'\n",
" if spec_table['TG_PART'][i] == 2:\n",
" instr='MEG'\n",
" if spec_table['TG_PART'][i] == 3:\n",
" instr='LEG'\n",
"\n",
" ax.set_title(\"{grating}{order:+d}\".format(grating=instr, order=spec_table['TG_M'][i]))\n",
"\n",
" plt.tight_layout()"
]
},
{
"cell_type": "markdown",
"id": "6dd34d78",
"metadata": {},
"source": [
"This can then be analyzed in your favorite spectral analysis tool, e.g., [pyXspec](https://heasarc.gsfc.nasa.gov/xanadu/xspec/python/html/index.html). (For the winter 2018 AAS workshop, we demonstrated this in a [notebook](https://github.com/NASA-NAVO/aas_workshop_2018/blob/master/heasarc/heasarc_Spectral_Access.md) that you can consult for how to use pyXspec, but the pyXspec documentation will have more information.)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e37b38a2",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"anaconda-cloud": {},
"jupytext": {
"notebook_metadata_filter": "all",
"text_representation": {
"extension": ".md",
"format_name": "myst",
"format_version": 0.13,
"jupytext_version": "1.14.4"
}
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.15"
},
"nav_menu": {},
"source_map": [
33,
41,
62,
68,
71,
75,
78,
84,
89,
93,
101,
105,
110,
129,
133
],
"toc": {
"navigate_menu": true,
"number_sections": true,
"sideBar": true,
"threshold": 6,
"toc_cell": false,
"toc_section_display": "block",
"toc_window_display": true
}
},
"nbformat": 4,
"nbformat_minor": 5
}